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Abstract 

Capturing complicated dynamics and understanding the underlying controlling ecological processes is one of 

the major ecological issues. The Allee effect is an essential component in ecology, and considering it can 

have a substantial impact on system dynamics. In the present investigation, we analysed a prey-predator 

scenario in which the predator is a generalist since it feeds on prey populations and the Allee phenomenon 

impacts the prey population's growth. The influence of the Allee effect on the changing nature of the system 

is investigated. The stability and boundedness of the model's equilibria are extensively investigated. We 

found that including the Allee effect enhances the system's local and global behaviours through a detailed 

bifurcation analysis. The chaotic nature of the system is strongly impacted by the Allee effect, particularly 

once a specific threshold value is reached. In the study of bifurcation analysis, we looked into bifurcations 

such the presence of transcritical bifurcation and Hopf-bifurcation to chaos. We added stochastic perturbation 

to this problem by including random fluctuations in the sensitive parameters. Finally, we analysed the 

system's mean-square stochastic stability towards the internal equilibrium. As a result, it is discovered that the 

Allee effect and stochastic perturbation considerably influence the behaviour of the prey-predator system. 
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1 Introduction 

Predator-prey interaction is one of the essential intersperse relationship in ecology and is thought to provide 

the basis for the formation the various biologic networks and the entire ecological system. The Lotka-Voltera 

technique is inherently unstable, even though it is commonly regarded as the most traditional predator-prey 

system (Kot, 2001). Therefore, the origins of the predator-prey relationship remain of interest to 

biomathematics (Lie et al., 2009; Kent et al., 2003; Wang et al., 2011). In an effort to make the system more 

realistic, an extensive amount of research has been done as of yet (Gao et al., 2013; Celik et al., 2009; Hsu et 

al., 2001; Brown et al., 1981). An important concept that can be applied to make population models more 
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realistic is the Allee phenomenon. 

Allee observed in 1931 that the cluster's living condition is beneficial to population expansion, but that 

the density is too great, inhibiting population increase and perhaps leading to extinction owing to resource 

competition. According to the Allee effect, any population must have an unbiased optimum density for growth 

and reproduction. Predator-prey theory and Allee influence in prey development are being studied by 

numerous other researchers (Manna et al., 2017; Banerjee et al., 2017; Allee, 1931; Cai et al., 2015; Sen et al., 

2015; Wang et al., 2011; Feng et al., 2015). It is important to recognize that Allee effects can be classified as 

either severe or mild before continuing. The Allee effect is associated with a population growth threshold 

below which it becomes negative (Dennis et al., 1989; Lai et al., 1995; Lewis et al., 1993). However, even in 

small populations, when the Allee effect is limited, population growth slows but remains positive (Stephens et 

al., 1999; Berec et al., 2007; Courchamp et al., 1999).Furthermore, the functional response, or the rate of 

feeding, by the predator on the prey determines the dynamic complexity of the predator-prey system. When it 

comes to functional responses, the most common ones among arthropod predators are Holling type II (there 

are also Holling types I, III, and IV). To investigate the dynamical relationship between two species predator 

and prey, Ivlev (1961) suggested another functional response, called Ivlev functional response:

   1 xx e     , where ,  are positive constants and represent the maximum rate of predation and the 

efficiency of the predator for capturing prey, respectively. It is both monotonically increasing and uniformly 

bounded.The predator-prey systems with Ivlev's functional response have been thoroughly studied by many 

renowned mathematicians and ecologists (Kamrujjaman et al., 2023; Rana et al., 2020; Das et al., 2022). Both 

the uniqueness and existence of limit cycles, as well as numerical calculation of phase pictures, were 

investigated in these empirical investigations. 

The present paper is organised in the following manner: The model's (3) boundedness is discussed in 

Section 2. The consistency of the equipoises of the paradigm (3) was discussed in depth in Section 3. The 

stability of equipoises (3) was examined in Section 4 in relation to various bifurcation types, including the 

transcritical bifurcation and the Hopf bifurcation in the vicinity of the axial and positive equilibria for the 

paradigm. In Section 5, we looked at the steadiness of the stochastic system linearized paradigm (3) with 

mean-square fluctuations as perturbations. In Section 6, we utilise MATLAB to do numerical simulations to 

examine the prior theoretical conclusions. 

 

2 Model Formulation 

The advanced and widely applicable paradigm was built on the foundation of a single model of population 

expansion. The Lotka-Volterra paradigm has a mathematical representation. 

( ) ( ) ( ) ,

( ) ( ) ( ) .

x r x t a x t y t

y c x t y t m y t

 

 




              (1) 

At this moment, it is well acknowledged that Allee has a significant impact on the potential of local and global 

extinction, and that it may generate a strong kind of dynamical impacts (Zhou et al., 2005). Examining the 

effects of Allee on the predator-prey paradigm is both exciting and crucial: 

 

( ) ( )
( ) 1 ( ) ( ) ,

( )

( ) ( ) ( ) .

x t x t
x r x t a x t y t

K x t A

y c a x t y t m y t

  


 

 
 
 





          (2) 
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Here, the term 
x

x A
  represents weak Allee effect, where 0A   indicates a constant weak Allee effect. 

The amounts of prey and predator are denoted by x , y correspondingly, m  is the hunters' inborn passing 

speed, c  is the transformation proficiency from prey to hunter, K  is the carrying capacity,  r  is the prey 

population's inherent increasing rate, and is the prey catch rate by their hunters. Integrating the type-II 

operational retort in the system (2) is exciting in order to bring the system launched in this work biologically 

closer to reality. Based on the foregoing, we develop the following predator-prey model with type-II 

operational mechanism and weak Allee effect: 

 

( ) ( ) ( ) ( )
( ) 1

( ) 1 ( )

( ) ( )
( ) .

1 ( )

,
x t x t x t y t

x r x t
K x t A y t

c x t y t
y m y t

y t








  
 

 


 
 
 





         (3) 

From above model (3), we can notice the three equilibrium points    0 10, 0 , , 0E E K  and  ,E x y   . Here 

 1m y
x

c






  and y is the positive root of the cubic equation 3 2

0 1 2 3 0.A y A y A y A     

Where 3 2 2 2 2 2
0 1 3,A rm A rmK c m r K cm         , 2 2 2 2

2 2 3A rmK c rm K cm KA c        , 

and 2
3A rmK c rm  . 

2.1 Boundedness 

The subsequent theorem set up the boundedness of the system's solutions. 
Any xy  plane solution that starts in the first quadrant will always finish in the first quadrant. As a result, as 

shown in Theorem 1, the solution is positive and bounded. 

Theorem 1. For the model’s (3) solution   ( ),x t y t  

   2
1

( ) .
4

K m r
lt sup x t y t

t c rm


 


 
 
 

         (4) 

Proof: We consider 
1

,L x y
c

    on the basis of the solution of the model (3), we can verify the following 

inequality. 
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As a result, it can be said that    2
1

( ) .
4

K m r
lt sup x t y t

t c rm


 


 
 
 

     (5) 

3 Stability Analysis 

This section of the study emphasises on the examination of several equilibrium points and their local stability. 

This is achieved by analyzing the characteristic roots of the variational matrix, which is computed in the 

vicinity of the equilibrium points. 

Let   1 , 1
1

,
x x xy

f x y rx
K x A y




  
 

 
 
 

 

   
2 , .

1

c x y
f x y m y

y




 


                               (6) 

The Jacobian matrix for model (2) can be calculated as follows:
1 1

2 2

f f
x y

J
f f

x y

 
  
 

, 

where 
 

 

3 2

1 2

2 3 2

1x

rx rK Ar x ArKx y
f

yK x A




   
 


, 

 1 2
1

y

x
f

y




 


, 

   2 2 21 1
,

x y

c y c x
f f m

y y

 
 

  
 

.            (7) 

The Jacobian matrix of the model (2) at  0 0,0E is given by 0

0 0

0
J

m



 
 
 

    (8) 

As a result, it can be observed that 0E is invariably a saddle node. 
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The variational matrix of system (2) at  1 ,0E K  is given by 

1

0

rK
K

J K A
c K m








 


 
 
 
 

.              (9) 

Here 1E  is stable since first eigen value 
rK

K A




 is negative if 0

m
c K m

cK
      , and 1E  is saddle 

point when .
m

cK
    Finally, for model (2), the Jacobian matrix may be found at E  

   

 

3 2 2

2 2

2

2 3 2

1 1

1

rx rKx rAx rAKx y x

yK x A y
J

m c xy
y
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 
 





    


 






 
 
 
 
  
 

 .       (10) 

The latent polynomial is    2C Tr D     ,         (11) 

where
 

 
 

2
2 22

1

rx c xy
Tr x Ax AK
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
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 
, 

 
       

3 2 2 2 2

2 2 3 2

2 3 2

1 1 1
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D
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  

  

  
  

   
. 

The local asymptotic stability of point E  in scheme (3) can be easily verified by applying the Routh-Hurwitz 

criterion, under the condition that
2

2

x
A

K x



. 

Theorem 2. The global resilience of equilibrium point  1 , 0E K  is established provided the condition 

m

cK
   holds. 

Proof: Let the Lyapunov function be 

  1
, .

x

K

p K
V x y dp y

p c


                     (12) 

Calculating 'sV derivative along the model's solution 
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4 Bifurcation Analysis 

This section focuses on how equilibrium points appear and vanish, as well as how the stability of equilibria 

changes as a result of various types of bifurcations. 

4.1 Transcritical bifurcation 

Theorem 3. When 0  , with 
m

cK
  , the model undergoes transcritical bifurcation in the region around

1E . 

Proof: If 1 0J  , one of the characteristic roots will be zero which gives 0  . 
rK

K A




 is currently 

another characteristic root. Let V  and W  be the characteristic vectors with respect to the characteristic root 

zero of the matrices 1J  and 1
TJ  , we get 
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   (13) 

Therefore, the system has transcritical bifurcation at 0  around the axial equilibrium 1E  (Sotomayor 
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theorem, Perko, 2001). 

4.2 Hopf bifurcation 

The system undergoes bifurcation if 
2

.
2

x
A

K x



 Next, we have to show that system (2) experiences a Hopf 

bifurcation if
2

.
2

x
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


 By choosing a suitable parameter, we investigate the Hopf bifurcation at 

 * * *, .E x y  

Let
2

*
0

*2

x
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


.              (14) 

If 0 ,A A  then 0T   and the Jacobian matrix J  will have the couple of imaginary characteristic roots 

i may    . Let    L A iM A   be the roots of 2 0T D    , then 
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and 21
, 4

2 2
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
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 


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 
 

0

3 2 0
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AK x K A
dA K x AA A


   


   . 

If  2
2

Kx
AK x K A A

K x
   


, on using the result of Poincare-Andronov-Hopf bifurcation theorem, we 

say that the system (2) at E  go through a Hopf bifurcation. As a result, system (2) admits a Hopf bifurcation 

at 0A A  corresponding to E . 

5 Stochastic Analysis 

In this section, we used the white noise approach to characterize the external disruptions on the system (3). We 

explain all of this at the coexistence equilibrium point. We investigate the linearized model with perturbations 

to account for the stability of the stochastic system. We compute the population intensities of noise-induced 

fluctuations (variances) around the positive equilibrium using the methodology developed by Nisbet and 

Gurney (1982) and Carletti (2006). The perturbed stochastic model can be expressed as 
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1 1

( )
1 ( ) ,

1

dx t x x xy
rx dt p t

dt K x A y





   

 

  
    

             (17) 

 
2 2

( )
( )

1

c x ydy t
my dt p t

dt y





  



 
 
 

. 

The aforementioned system is linearized by incorporating the perturbations 1 2( ) and ( )x t x t  
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Both sides are subjected to Fourier transformations, and the result is 
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 Q  has an inverse, and knowing that it is a non-singular matrix, hence from (19) we get 
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Where    
 

11 12

21 22

AdjQ p p
P

p pQ





 

 
  

 

The spectral density is employed to establish the following definition 

    2

lim .
g

S dg T T


  


 

Assuming that  g t a random function with a mean of zero and that  Sg   is the variance of   'sg t  

elements of inside the interval , d   . 
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An auto covariance function is provided by the inverse transform of  gS   

   1
,

2
g g

iC S e d  






    

and   'sg t  variance function is expressed as 

 2 1
0

2
g g gC S d 






   . 

From (14), the mean value of the population is  
2

1
where , , 1, 2ij j ij

j
x p b i ji  


  . 

Therefore,    
2 2

1
, 1, 2

xi
j ij

j
S q p i


  . 

The fluctuations of  1, 2ix i   are expressed as 

 
2 22

1

1 1

2 2x xi i
j ij

j
S d q p d   

 

 

 
    . 

By using system (11) with the aforementioned variances, we can thus find 

   1

2 2

2 1 1
1 2

1

2x

A B
q d q d

Q Q
  

  

 

 

 
  
 
 
  , 

   2

2 2

2 2 2
1 2

1

2x

A B
q d q d

Q Q
  

  

 

 

 
  
 
 
  ,         (21) 

where      1 2Q Q iQ     and    2 2 * * *
1 2

1
, 2Q c x y Q rx

A
          

where  22 22 *
1 1, ,A B x    

2
22 2* 2 *

2 2

1
, 2 .A c y B rx

A
       

 
 

The variances of the system (17) populations x and y are given in (21). The majority of the time, finding these 

integrals is difficult. We can easily explain these outcomes using mathematical re-enactments in this way. 

Taking different boundary values and calculating the difference over time, if the difference is small, the related 

population is stable, but unstable. 

 

6 Numerical Simulations 

In this portion, we use MATLAB software to provide numerical simulations to validate our mathematical 

conclusions and to explore the impact of the Allee parameter with Holling type - II operating retort and 

stochasticity on the dynamics of the two species. 

Example 1. 

We illustrate the behaviour of system (3) across the concomitance equipoise by taking the parameter values

0.2640, 69.2, 0.1, 0.938, 0.646, 0.882, 0.345,r K A c m        we observe that system (3) converges 
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globally towards the coexisting equilibrium (see Fig. 1). If we increase the value of 0.126A   and keep the 

other parameters fixed, from Fig. 2 and Fig. 3, the positive equilibrium appears to be losing its stability. The 

Hopf-bifurcation of system (3) near positive equilibrium at 0A A  is shown in Fig. 3. 

 

 
Fig. 1 The stability of the concomitant equipoise of system (3). 

 
Fig. 2 Local asymptotic stability of the concomitant equipoise of system (3) corresponding to 0.126A  . 

 

 

 
 
 
 
 
 
 
 
 
 
 

Fig. 3 Local asymptotic stability of the concomitant equipoise of system (3) corresponding to 0.128A  . 
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Example 2. Taking the parameter values as 0.2640, 11, 0.128, 0.76, 0.646, 0.882,r K A c      

0.345,m  and white noises 1 20.05, 0.01.    

 

 

 

 

 

 

 

 

 

Fig. 4 Trajectories of the deterministic system (3) (left figure) and the stochastic system (17). 

 

Fig. 4 depicts the system's deterministic and stochastic courses (3). We learned that when the noise is 

strong enough, it can confine the population, causing it to fluctuate to a substantial amount. In these instances, 

the stochastic model may be employed to explore the population's dynamics. 

 

7 Conclusions 

In this work, we develop the traditional predator-prey scheme, which has a weak Allee effect. We then 

demonstrate and examine the stability and boundedness of the model. We also showed that for 0 ,A A  the 

model (3) features a transcritical bifurcation near the axial equilibrium and a Hopf bifurcation at  ,E x y   .  

To meet the stable criteria, we pick the necessary parameters initially. Then we attempt to fluctuate the value 

of constraint A later, including the timing, phase, and bifurcation diagrams for individually constraint depicted. 

As A rises, the model (3) will induce bifurcation, which adds to our conclusion. From a biological standpoint, 

it is worth noting that there are some differences which will alter the model’s stability by inclusion of a weak 

Allee effect, i.e., the model's stable state across populations will be disrupted.In addition, we explored the 

system's stochastic stability by integrating white noise perturbations. White noise has an effect on the system's 

stability, according to our research (Fig. 4). 
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