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Abstract 

Applications of graph mining have proliferated across the research spectrum in recent years. Mining data to 

retrieve information is a big deal as data are unstructured and huge in size, volume and in different data-types 

as internet is available to everyone and anywhere. Therefore data is so rapidly increased and for that point this 

mining concept came. In graph mining, analysis of graph base data is considered. In different research fields 

use graph base mining as it give quick and efficient result of large datasets. Here we consider biological data 

which are very complex to describe and analyse to extract useful information, so now researchers use 

computational tools to mine the large datasets, graphs are the most efficiently used. We consider amino acid 

network to do graph mining and extract some useful patterns from the network. Amino Acid Networks (AANs) 

are undirected graphs where amino acids are act like vertices and their relationships connect two vertices in 

protein structures. Every amino acid exhibits different physico-chemical properties. The shift in R groups 

affects various characteristics of the amino acids. The shift in R groups affects the various characteristics of the 

amino acids. In this paper we have construct a graph of amino acids based on property similarity and discussed 

different measures of centrality. We have also investigated the correlation coefficients between different 

measures of centrality. 

 

Keywords amino acids; centrality measure; correlation coefficients; data mining; graph mining. 

 
 
 
 
 
 
 
 
 
1 Introduction 

An introduction to Amino acid properties given in following description: Cells are the building blocks of all 

living things. Each cell contains a single set of chromosomes, which are long strands of DNA or RNA that 

serve as the model for the entire organism. Genes are DNA blocks which make up a chromosome. Every gene 

codes for a different protein. The fundamental building blocks and functional components of all living things 

are proteins. The building components of proteins are amino acids. Every amino acid is a three set code that 

can have four different bases. One amino acid is specified by a codon which is a unit made up of three base 

pairs. Based on the evolutionary significance of the genetic code, in a codon the second base position thought 
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to be biologically most relevant, whereas the third base is thought to be least significant. Amino acid chains 

create a linear chain that makes up each protein. There are 20 amino acids found till now that occurs in 

proteins. The chain of amino acids takes on different shapes for different proteins. Deoxyribonucleic acid 

(DNA) stores genetic information about how to construct or synthesize proteins. The DNA or RNA is the 

chemical in the cells of animals and plants that carries genetic information. It is made up of unit called 

nucleotides. Each nucleotide contains one sugar group (deoxyribose), one phosphate group and one 

nitrogenous base (Adenine (A), Cytosine(C), Guanine (G) or Thymine (T)). The sugar and phosphate group 

are responsible for the helical backbone of DNA. The purines (Adenine and Guanine) and the pyrimidines 

(Cytosine and Thymine) form the double helix. The bases are paired and joined together by hydrogen bonds. 

In this article we have considered a network of amino acids. Based on the amino acid properties similarity 

distance, the networks compatibility relation is established. In the field of biology using computational 

techniques, the researchers give significant contributions to solve complex networks. Bora et al. (2020) 

constructed an amino acid networks based on properties that exhibits by amino acids. Correlating some 

physico-chemical and physical properties of amino acid, they analyzed the relative importance of different 

amino acids using centrality measures. Trying to capture uncertainty in relationships between users in a social 

network, the fuzzy graph model of Bloch et al. (2023) can do more precisely a social network than a 

deterministic graph. They generate centrality of each node as a fuzzy relation and find all possible centrality 

values and determine the corresponding truth degree of every node. In three such measures the centrality is 

expressed as fuzzy relation. In earlier studies Ali et al. (2016) developed an amino acid distance matrix. The 

relative evolutionary significance of the nucleotide positions of the corresponding codons is used to define the 

distance. A network of amino acids is derived from the distance matrix. According to their argument, this 

network illustrates the evolutionary pattern of amino acids. They have also discussed about how important 

amino acids are in relation to this network (Gohain et al. 2015). A partial ordering is equipped on the genetic 

code and a lattice structure has been developed from it. The codon-anticodon interaction, hydrogen bond 

number and the chemical types of bases play an important role in the partial ordering in the base set and on the 

structure of the genetic code. Some relations between the lattice structure of genetic code and 

physico-chemical properties of amino acids had established. Also Aftabuddin and Kundu (2007) discussed 

about hydrophobic, hydrophilic and charged network within the protein. Hydrophobic amino acids are 

considered as vertices in the hydrophobic network, whereas hydrophilic and charged amino acids are 

considered as vertices of hydrophilic and charged networks respectively. If any two atoms from different 

amino acids are within a cutoff distance 5Ao, the amino acids are considered to be connected. Further they 

showed that the average degree of the hydrophobic networks has a significantly larger value than that of 

hydrophilic and charged networks. The average degree of the hydrophilic networks is slightly higher than that 

of the charged networks. The average strength of the nodes of hydrophobic networks is nearly equal to that of 

the charged network, whereas that of hydrophilic networks has a smaller value than that of hydrophobic and 

charged networks. The average strength for each of the three types of networks varies with its degree. The 

average strength of a node in a charged network increases more sharply than that of the hydrophobic and 

hydrophilic networks. Each of the three types of networks exhibits the ‘‘small-world’’ property. In earlier 

studies Jiao et al. (2007) discussed about the weighted amino acid network based on the contact energy. They 

have shown that weighted amino acid network satisfy “small-world” property. Considering hydrophobic and 

hydrophilic network, Kundu (2005) taked amino acids as vertices. Two amino acids (vertices) are connected if 

any two different amino acids are within 5Ao distance. The paper gave a explanation that small world property 

within protein satisfy within hydrophobic and hydrophilic network. It was also demonstrated that hydrophobic 

networks have higher average node counts than hydrophilic networks. Also Schreiber and Koschutzki (2004) 
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compared centralities for biological networks namely PPI network and transcriptional network. As a result of 

their study, it was observed that in the analysis of biological networks various centrality measures should be 

considered.  

In earlier studies Baruah and Ali (2022) constructed identity sub-graph on the genetic code and they have 

studied different centrality measures, clustering coefficient and degree of distribution. Also, they construct a 

network based on distance matrix. The distance matrix is obtained by transition and transversion mutation of 

codons. Finally they proposed that this network reflects the evolutionary patterns of amino acids. Further, they 

have study different centrality measures, correlation coefficients. Also Yuan et al. (2022) suggested a deep 

graph-based network for predicting protein-protein interaction sites, in which the prediction problem is 

transformed into a graph classification challenge and resolved using deep learning. In deep learning, this 

method used initial residual and identity mapping techniques. As a result of the experiment they showed that 

deeper architecture allows significant performance improvement in comparison to other sequence based or 

structure based methods.  

In present study, we try to explore some graph theoretic notions in amino acids network. The paper is 

organized as follows: in section 2 some preliminary concepts of graph theory on which we operate and briefly 

review the various centrality measures. In section 3 the methodology for construction of graph from amino 

acids is given and in section 4 different centralities measures of Amino Acids Graph is discussed. In section 5 

correlation between different centralities are discussed and in section 6 we give the conclusion of this paper. 

 

2 Basic Concepts of Graph 

An undirected graph G = (V, E) consists of a finite set V of vertices and a finite set E of edges (Zhang, 2016, 

2018). If an edge e = (u, v) connects two vertices u and v then vertices u and v are said to be incident with the 

edge e and adjacent to each other. The set of all vertices which are adjacent to u is called the neighborhood N(u) 

of u. A directed graph or digraph G, if each edge of the graph has a direction. A graph is called loop-free if no 

edge connects a vertex to itself. An adjacency matrix A of a graph G = (V, E) is a (n × n) matrix, where aij = 1 

if and only if (i, j) א E and aij = 0 otherwise. The adjacency matrix of any undirected graph is symmetric. The 

degree, of a vertex v is defined to be the number of edges having v as one of its end point. A walk is defined as 

a finite alternating sequence of vertices and edges, beginning and ending with vertices, such that each edge is 

incident with the vertices preceding and following it. No edges appear more than once in a walk. 

A vertex however may appear more than once. In a walk starting and end vertices are initial and terminal 

vertices. A walk is closed if the initial and terminal vertices coincide and open otherwise. A trail is a walk 

without repeated edges and path is a walk without repeated vertices. 

A shortest or geodesic path between two vertices u, v is a path with minimal length. A graph is connected if 

there exists a walk between every pair of its vertices. 

In graph theory, centrality measure of a vertex represents its relative importance within the graph (Zhang, 

2018, 2021, 2023). A centrality is a real-valued function on the nodes of a graph. More formally a centrality is 

a function f which assigns every vertex v א V of a given graph G a value f (v) א R. In the following we have 

discussed four most commonly used centrality measures. 

2.1 Degree of centrality 

The most simple centrality measure is degree of centrality, cd (u). It is defined as “the number of nodes to 

which the node u is directly connected (Zhang, 2016, 2018, 2021, 2023). The nodes directly connected to a 

given node u are also called first neighbors of the given node. Degree Centrality shows that an important node 

is involved in a large number of interactions. This interaction gives the immediate importance or risk of the 

node in the corresponding network. It is defined as 
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cd (u)=deg(u). 

 

However in real world problem the degree of centrality is not an actual measurement for finding importance or 

risk of a node. In real situation an important node may be connected indirectly with other nodes. 

2.2 Eigenvector centrality 

Another important measure of centrality is “eigenvector centrality (Bonacich, 1972; Xin and Zhang, 2021; 

Yang and Zhang, 2022). An eigenvalue of a square matrix A is a value λ for which det(A-λI) = 0, where I is the 

identity matrix of same order as A. Eigenvector centrality is defined as the principal eigenvector of the 

adjacency matrix of corresponding graph. In matrix-vector notation we can write 

 

λX=AX 

 

where A is the adjacency matrix of the graph, λ is a constant (the eigenvalue), and X is the eigenvector. In 

general, there will be different eigenvalues λ for which an eigenvector solution exists. However eigenvector of 

the greatest eigenvalue is the eigenvector centrality. Eigenvector centrality of vertices gives the contribution of 

the neighbour’s and neighbour’s of neighbour’s and so on. 

2.3 Closeness centrality 

One of the three traditional centralities at the node or vertex level is “closeness centrality, the other two are 

betweenness centrality and degree centrality (Rolito 2021; Zhang, 2018, 2021, 2023). Generally closeness 

centrality is defined as the inverse of the sum of the shortest path between each node to every other node in the 

network. The more central the vertex is, the more close to all other vertices of G. It is an idea how a vertex is 

close to all other vertices not only the first neighbour but also in global scale (Freeman, 1978). The closeness 

centrality of a node depicts an important node that can easily reach or communicate with other nodes of the 

network. It is defined as: 

 

Ccl (u) = 
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where, n is the number of vertices of the network and d(u,v) is the shortest path distance between the pair of 

vertices u and v. From the above definition it is clear that if a node has minimum cumulative shortest path 

distance than that node has maximum closeness centrality. And maximum closeness centrality node is very 

well connected to all other” nodes. 

2.4 Betweenness centrality 

The betweenness centrality for “each vertex is the number of these shortest paths that pass through the vertex 

(Zhang, 2018, 2021, 2023). The betweenness centrality finds wide application in network theory: it represents 

the degree of which nodes stand between each other. The betweenness centrality interactions between two non 

adjacent nodes depend on the other node (Freeman, 1978), generally on those on the paths between the two. 

The betweenness centrality of a node u is the number of shortest path going through u. Mathematically it is 

defined as: 

Cbtw(u) = 
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s u V t u V st

u
   

   

245



Network Biology, 2024, 14(3): 242-253 

 IAEES                                                                                      www.iaees.org  

where, σst is the number of shortest paths from vertex s to t, and σst(u) is the number of shortest paths from s to 

t that pass through u. Betweenness centrality depicts identifying nodes that make the most information flow of 

the network. An important node will lie on a large number of paths between other nodes in the network. From 

this node we can control the information of the network. Without these nodes, there would be no way for two 

neighbors to communicate with each other. In general the high degree node has high betweenness centrality 

because many of the shortest paths may passes through them. However a high betweenness centrality node 

need not always be high degree” node. 

 

3 Methodology for Construction of Graph From Amino Acids 

In this manuscript, we have proposed an algorithm for construction of amino acid graph based on physical 

properties. The organic compound which is composed of amine (-NH2) and carboxylic acid (-COOH) are 

amino acids. Each amino acid expresses different properties which are changes with the change in R groups. 

The R group is often referred to as the amino acid side chain. Urbina et al. (2006) developed a measure of 

similarity between amino acids based on eight physical properties of amino acids. These properties are volume 

(Creighton, 1993), bulkiness, polarity and isoelectric point (Zimmerman et al., 1968), two different measures 

of hydrophobicity (Kyte and Doolittle, 1982; Engelman et al., 1986), surface area accessible to water (Miller et 

al., 1987), and fraction of accessible area lost when a protein folds (Rose et al., 1985). Based on these eight 

properties, we have done network analysis by using centrality measures to find out the relative importance” 

between them. Further we calculate the correlation of centrality measures to give conclusion on basis of the 

results. 

The similarity properties of amino acids in numerical values are shown in Table 1 (Urbina et al., 2006). 

The table shows a distance matrix which is symmetric in nature. From this distance matrix, there are 210 data 

points, we try to build a graph of the amino acids. Calculating the 210 data points we get the mean value is 

3.461. Considering this mean as a threshold value which indicates that the data points have a tendency to 

cluster around that amino acid to define link between pair of amino acids. If the distance between two amino 

acid is less than or equal to 3.461 then linked by an edge. 
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Table 1 Distance between pair of amino acids based on physical properties. 
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The symbols and notations used in the algorithm are described in the following Table 2. 

 

 

Table 2 Symbols and notations. 

Symbols Description 

Ai Amino acids in row 

where i,  goes to 1->20 

Aj Amino acids in column 

where j goes to 1->20 

thr Threshold value(mean value) 

E(Aij) An edge between two amino acids 

AG Amino acid graph 

 

 

 

The algorithm we have proposed is explained briefly in details as follows: 

Step 1 to Step 4- 

 We have put 20 amino acids in row as Ai and column as Aj.  

 Taking the distance between similarity property for each pair of amino acids. 

 The mean value of the above table i.e. 3.416 as threshold value 
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 We check each Aij <=threshold then there will be a connection or edge between them. 

 Now, we got the graph of amino acid based on distance between similarity properties. 

 

The corresponding graph is depicted in Fig. 1. 

 

 

Fig. 1 The graph of amino acids. 

 

 

Given that the matrix's distance between two amino acids is determined by how comparable their 

properties are, we are able to determine from the graph that two amino acids are compatible if they are 

connected. One amino acid is likely to evolve from the other if there is an edge connecting them. Therefore, 

we can claim that the network roughly illustrates the amino acid's evolutionary process. 

 

Step5-To calculate the adjacency matrix of the above network 

 We have check that each pair of the amino acids in the network have an edge or not 

 If there is an edge then value set as 1 otherwise it set as 0. 

 Now, we got the adjacency matrix of the network. 

 

The corresponding adjacency matrix of the graph is given as the following matrix. As can be seen from the 

adjacency matrix bellow, it is clear that the graph (Fig. 1) is connected, then no row or column in the top (or 

lower) triangular matrix is zero. 
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1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 1 1 0 1 0 0 1 1 1 1 0 1 0 0 0 0
0 0 0 1 1 1 0 1 0 1 0 0 1 1 1 0 0 0 0 0
0 0 0 1 0 1 1 0 0 1 0 0 1 1 0 1 0 1 0 1
0 0 0 0 0 1 0 1 0 1 1 1 0 1 1 0 0 0 0 0
0 0 0 0 1 1 1 0 0 1 1 1 1 0 0 1 0 1 0 1
0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 1 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 1
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 ے0
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4 Different Centralities in Amino Acids Network 

To analyze the amino acids network (Fig. 1) we have calculated different measures of centrality by using 

python, taking the values in Table 3. 

 

Table 3 Different centrality values for the amino acids. 

Vertex Degree 

Centrality (Cd) 

Closeness centrality 

(Ccl) 

Betweenness 

centrality (Cbwt) 

Eigenvector 

centrality (Cλ) 

F 8 0.542 1.092 0.248 

L 8 0.542 1.859 0.256 

I 7 0.527 0.950 0.222 

M 11 0.655 10.006 0.325 

V 9 0.575 2.453 0.286 

T 13 0.760 22.327 0.369 

Y 10 0.655 18.125 0.283 

C 9 0.575 4.259 0.277 

W 5 0.487 0.142 0.153 

P 10 0.678 11.865 0.292 

A 8 0.593 11.139 0.229 

Q 9 0.655 16.206 0.227 

S 7 0.558 8.667 0.190 

N 9 0.655 16.166 0.217 

G 2 0.395 0.000 0.048 

H 8 0.612 36.737 0.173 

K 2 0.395 0.000 0.022 

E 4 0.463 1.000 0.077 

R 2 0.395 0.000 0.022 

D 3 0.431 0.000 0.059 
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Here, we've built a network of the 20 amino acids according to eight of their physical characteristics. From 

Table 3, we found that T receives the highest rank from degree, closeness, and eigenvector centralities, while 

H receives the highest rank from betweenness centrality. 

The number of amino acid which are immediate predecessors or successor of another amino acid say 

x is the degree of centrality. The number of X's first neighbors determines it. The amino acid T, for instance, 

has a degree of centrality of 13. Consequently, T is most likely a direct predecessor or successor of thirteen 

amino acids (A, Y, H, Q, N, C, F, L, I, M, V, S, and P) in the evolutionary process. 

The centrality of the eigenvector vector is better preserved and more recognizable than the degree of 

centralities in the same areas. A recursive form of degree of centrality is the eigenvector centrality. It is 

considered large for a node, if it has significant neighbors or a high number of neighbors. According to 

Chakrabarty and Parekh (2014), it preserves not only a node's connectivity but also that of its neighbors, 

neighbors' neighbors, and so forth. For the amino acid T, the eigenvector centrality is greatest. As such, the 

contribution of this amino is same with contribution of neighbour's and neighbour's to neighbour's, and so on. 

Otherwise, the evolutionary pattern of this amino acid is the same in its neighbour's and its 

neighbour's neighbour's, and so on.   

Closeness centrality of an amino acid say, P gives the number of amino acid which may or may not be 

immediate of P and also predecessor or successor of P. 

   Increased closeness centrality values for amino acids indicate that evolutionary process is easily 

communicated between other amino acids. As an example, the closeness centrality values of the amino acids T 

and P are 0.760 and 0.678, respectively. Therefore, we might conclude that T facilitates easier communication 

of the evolutionary process than P does; that is, more amino acids precede or succeed T than P in the 

evolutionary process. 

From betweenness centrality indication of an amino acid's contribution to the process of conveying the 

evolutionary process can be determined. More greater value of betwenness centrality of an amino acid, say, Q 

means more pairs of amino acids are connected by evolutionary process through it. According to the 

tabular results, the betweenness centrality of the amino acids H and E is 36.737 and 1, respectively. Therefore, 

amino acid H emerges as an intermediary between more pairs of amino acids than amino acid E, meaning that 

more pairs of amino acids interact by evolutionary process via H than through E. 

 

5 Correlation Between Different Centralities 

In this section, “we have compared the different centrality measures that were discussed in the previous section. 

For this we have discussed the bivariate correlation of various measures of centrality of the amino acids 

network. Correlation is the most important character to study assortative or disassortative networks. A network 

is called assortative if the vertices with higher degree have the tendency to connect with other vertices that also 

have high degree of connectivity. If the vertices with high degree have the tendency to connect with other 

vertices with low degree then the network is called disassortative (Newman, 2002). The correlation 

coefficients for all the centrality measures are shown in Table 4. All correlation coefficients(r) are based on 

Pearsons’s method. The range of r-value lies between +1 and -1. If r > 0 then the network is assortative 

whereas if r < 0 then the network is disassortative and r=1, then it is a perfect assortative mixing pattern. 

Table 4 shows a strong correlation between the eigenvector centrality (Cλ), closeness centrality (Ccl), and 

degree of centrality (Cd), whereas there is no significant correlation seen betweenness centrality (Cbwt) and any 

of the other three variables. Assortative networks are recognized to facilitate information transfer more easily 

than disassortative networks (Newman, 2002). Based on the correlation coefficients table above, we can see 

that each pair of centrality measures has a positive correlation coefficient (r>0), indicating that the network is 
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of the assortative type and that the evolutionary flow of data will be easy. 

 

Table 4 Correlation coefficients for the centrality measures. 

 Cd Ccl Cbwt Cλ 

Cd 1 0.967 0.598 0.974 

Ccl 0.967 1 0.724 0.895 

Cbwt 0.598 0.724 1 0.430 

Cλ 0.974 0.895 0.430 1 

 

It has been observed that there is no overall relationship between property similarity and codon similarity 

as stated in this paper. However, for most amino acids (55% of total amino acids), property similarity 

correlates to codon similarity. We can therefore draw the conclusion that an evolutionary process based on 

codon similarity will present a different picture than one that is explained in relation to property 

similarity.”Deciding which represents the true picture is not that simple. All that we have attempted to do is 

analyze the evolutionary process through property similarity. 

 

6 Conclusion 

In this manuscript “we have attempt to describe the evolution of amino acids by considering their property 

similarity of the amino acids. It is possible to study the evolutionary process of amino acids using different 

concepts, such as structural similarity and codon similarity etc. We created a network structure of amino acids, 

through the definition of a compatibility relation based on the similarity distance of amino acids. After 

discussing various centrality metrics, we found that, with the hydrophilic amino acid T (threonine) has the 

highest centrality values except betweenness centrality, while hydrophilic amino acid H (histidine) has the 

highest centrality value in betweenness centrality. Thus, we can draw the conclusion that the hydrophilic 

amino acids H (histidine) and T (threonine)” have been essential to the evolution of amino acids. 

Next, we discussed correlation coefficients of different centrality measures of amino acids. We noticed 

that, all centrality measures show strong correlations except betweenness centrality (Cbwt). Thus, in the 

analysis of the amino acid network based on property similarity, we can conclude that betweenness centrality 

must be explored independently of the other centrality measures and studied separately. Also, our network is 

an assortative one since the correlation coefficient is positive for each pair of centrality measures. The 

evolutionary messages would therefore be following seamlessly.   
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