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Abstract 

The current study is based on a predator-prey model with infection that affects only predator species. 

Predators are divided into two categories such as the susceptible predator and the infected predator, which are 

feeding on prey species. The Takagi-Sugeno (T-S) based fuzzy impulsive control model was used to explore 

the stability of the Lotka-Volterra predator-prey system. Numerical simulation provides global stability and 

the fuzzy solution. 
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1 Introduction 

Disease’s impact on ecosystems is a significant topic from both a mathematical and an ecological point of 

view. As a result, ecologists and academicians have been focusing more and more on the creation of key tools, 

as well as experimental ecology, to characterize how ecological species are infected (Zhao and Zhang, 2013; 

Zhang and Liu, 2023). Lotka and Volterra made the first breakthrough in contemporary mathematical ecology 

for a predator-prey competing species. 

   The study of disease transmission in animals is known as epidemiology. Following Lotka and Volterra’s 

(Volterra, 1926) pioneering work on the predator-prey model, the latest mathematical ecology has attained an 

essential position in analytical biology (Maitiet al., 2007; Li and Zhu, 2009; Haque,  2009; Shakil et al., 2015).  

   Maximum models for the transmissible diseases are framed based on (Kermack and Kendrick, 

1927)famous work. The first to combine the fields, ecology and epidemiology are Anderson and May 

(Anderson and May, 1986), they constructed a predator-prey model in which predator species were infected by 

disease. In the following period many authors (Haque and Venturino, 2006; Baek, 2010; Haque, 2011;Wang et 

al., 2013; Elenaet al., 2013; Ferrarini, 2015; Liu and Liu, 2020; Kumari and Mohan, 2021) investigated and 

developed different predator-prey models in existence of disease. Recently, there has been an extensive 
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improvement in a fishery’s bio-economic management in presence of some infection (Bairagi et al., 2021; Hu 

et al., 2022).  

The consequence of infection in predator-prey model with disease in prey has been investigated 

enormously in last few years by many researchers. In 1986, the infectious disease transmission into a predator-

prey model has been introduced, assuming that the infection is only transmitted inside the prey species 

(Anderson and May, 1986). The traditional Lotka-Volterra predator-prey model, in which infection spreads 

among either the prey or the predator (Greenhalgh and Haque, 2007). However, a very less study has been 

done with infection in predator (Tseng et al., 2001; Wang et al., 2015). 

Venturino examined the local properties of eco-epidemic models in predator-prey systems with disease 

only in the predator population. The infectious disease in the Holling Tanner predator-prey model recorded a 

number of interesting results (Greenhalgh and Haque, 2007). They concluded that disease in any species can 

be used as a biological control.  

Almost all the physical dynamical systems in real life cannot be represented by linear differential equations. 

The non-linear model is analyzed with the help of Takagi-Sugeno Fuzzy model. The fuzzy model proposed by 

Takagi and Sugeno is described by fuzzy IF-THEN rules which represent local input-output relations of a 

nonlinear system. The main feature of a Takagi-Sugeno fuzzy model is to express the local dynamics of each 

fuzzy implication (rule) by a linear system model. It develops a systematic approach to generate fuzzy rules 

from a given input-output data set. Until recently, less work has been done on the stability of Lotka-Volterra 

predator-prey system with fuzzy impulsive control. The T-S method is very useful as it is less time consuming 

and easy to solve complex systems. We can easily analyze the stability of complex systems using T-S method 

(Lin et al., 2022). 

In this paper, we look at predator-prey model system with eco-epidemiological implications with three 

species: prey, susceptible predator, and infected predator, in which disease solely affects the predator 

population. 
 

2 Model Formation 

Our mathematical model is based on the following assumptions: 

 

 When there’s no predator, the prey population expands operational with a per capita constant r growth 

rate and a carrying capacity of the environment ܿ ൌ  where ݁ represents the prey’s intra-specific ,݁/ݎ

competition.Thus, 

ݔ݀  
ݐ݀

ൌ ݔݎ ቀ1 െ
ݔ
ܿ
ቁ                                                                             ሺ1ሻ 

where ݔሺݐሻdenotes the prey population at time. 

 The whole predator population ݖሺݐሻ is split into two classes in the presence of injurious infection, 

among one is the susceptible predator ݏሺݐሻ and the other is the infected predator ݅ሺݐሻ. As a result, the 

overall predator population density at time ti s – 

ሻݐሺݖ ൌ ሻݐሺݏ  ݅ሺݐሻ                                                                           ሺ2ሻ 

 We believe that the disease is solely affecting the predator species, and that the prey population is 

unaltered. The population of diseased predators does not recover or develop immune system. 

 For the susceptible predator and the infected predator, the predation rate or searching efficiency 

constants are m and n, respectively, because the susceptible predator is more effective than the 

infected predator; therefore, we assume that the prey is eaten by the susceptible predator based on the 

basic mass action occurrence. According to the Holling type - II functional response, the diseased 
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predator eats the prey. We assume that the susceptible predator has no handling time, and the infected 

predator has a non-zero handling time, which obviously depicts a better ecological situation than 

assuming both predators have the same predation rate.  

 We presume that the disease spreading is governed by the basic rule of mass action.  

 Let ܦ is the predator’s natural death rate, ܤ is the predator’s birth rate, and γ is the predator’s disease-

related mortality rate.  

 

We propose the following model utilizing a set of nonlinear differential equations based on the above 

assumptions: 

ᇱݔ                                                            ൌ ݔݎ െ ଶݔ݁ െ ݏݔ݉ െ
௫

ା௫
                                                (3) 

 

Ԣݏ                                                            ൌ ଵ݂݉ݏݔ െ ݏ݅ߚ  ሺܤ െ  (4)                                              ݏሻܦ

 

                                                            ݅ᇱ ൌ ݏ݅ߚ 
మ௫

ା௫
െ  (5)                                                             ݅ߛ

here all the parameters ݎ, ݁,݉, ݊, ,ߛ ߚ , are positive and ሺܤ െ  is the half saturationܣ .ሻcan be either signܦ

constant, ଵ݂, ଶ݂is the food conversion rate such that 0 ൏ ଵ݂, ଶ݂ ൏ 1, βis the rate of transmission of a force of 

infection. 

 

A matrix differential equation is stated as follows to analyze the system’s stability: 

 

ሶݔ ൌ ݔܣ  ߶ሺݔሻ                                                              (6) 

where 

ሶ= ቌݔ
ሻݐሶሺݔ
ሻݐሶሺݏ
݅ሺݐሻ

ቍ,  ܣ ൌ   
ݎ 0 0
0 ሺܤ െ ሻܦ 0
0 0 െߛ

൩,߶ሺݔሻ ൌ

ۏ
ێ
ێ
ݔെ݁ۍ

ଶ െ ݏݔ݉ െ
௫ூ

ା௫

ଵ݂݉ݔ െ ݏ݅ߚ

ݏ݅ߚ 
మ௫

ା௫ ے
ۑ
ۑ
ې
 

 

3 T-S Fuzzy Model With Impulsive Effects 

Let ݔሶ ൌ ݂ሺݔሺݐሻሻ, here the state variable is ݔሺݐሻ א ܴ, and ݂ א ,ሾܴܥ ܴሿ fulfills the condition ݂ሺ0ሻ ൌ 0, is a 

compact vector field defined in ܹ ك ܴ. Using the techniques proposed by Tanaka and Wang (Tanaka et al., 

2001; Wang et al., 2012). We can build a fuzzy model for system (3-5) as shown below: 

3.1.1 Control Rule i (i=1, 2,...r): 

IF ݖଵሺݐሻ is ܯଵ ሻݐଶሺݖ , is ܯଶ ... and ݖሺݐሻ is ܯ THEN ݔ ሶ ൌ ሻݐሺݔܣ , where r is no. of T-S fuzzy rules, 

,ሻݐଵሺݖ ,ሻݐଶሺݖ  … , ܣ is a fuzzy set andܯ ሻare the premise variables, eachݐሺݖ ك ܴכ is a constant matrix . 

Thus, the non-linear equations can be transformed into the following linear equation. 

If ݔሺݐሻ is ܯthen, 

ሶ ݔ ሺݐሻ ൌ ݐ,ሻݐሺݔܣ ് ߬                                               (7) 

∆ሺݔሻ ൌ ,ሻݐሺݔܭ ݐ ൌ ߬, ݅ ൌ 1,2,3,… ,ݎ ݆ ൌ 1,2, …    (8)       

where 
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ܣ ൌ   
ݎ െ ଵݖ െ ଶݖ െ ଷݖ 0 0

ଵ݂ݖଶ െݖସ  ሺܤ െ ሻܦ 0
ଶ݂ݖଷ ସݖ െߛ

൩ 

and ݖଵ, ,ଶݖ  ,ଷݖ  ସݖ  are related to the values of ݔሺݐሻ, ,ሻݐሺݏ ݅ሺݐሻ (here ݖଵ ൌ ݁݀ଵ, ଶݖ  ൌ ݉݀ଶ, ଷݖ ൌ
ௗయ
ାௗభ

, ସݖ  ൌ

ଷ݀ߚ  ,ܯ .( ܺሺݐሻ, ܣ    א ܴଷכଷ ݎ ,  is the number of the IF-THEN rules, ܭ  denotes the control of the ݆௧ 

impulsive instant, ∆ሺݔሻ ௧ୀఛೕൌפ ሺݔ ߬ െ ߬ିଵሻ. 

With center-average deffuzifier, the T-S fuzzy impulsive system may be written as: 

ሻݐሶሺݔ ൌ  ∑ ݄൫ݖሺݐሻ൯

ୀଵ ൫ܣݔሺݐሻ൯; ݐ   ് ߬                                     (9) 

∆ሺݔሻ ൌ  ∑ ݄൫ݖሺݐሻ൯ܭ; ݐ   ൌ ߬

ୀଵ                                                      (10) 

where,  

݄ሺݖሺݐሻሻ ൌ  ߱ሺݖሺݐሻሻ/∑ ߱ሺݖሺݐሻሻ

ୀଵ ,  ߱൫ݖሺݐሻ൯ ൌ  ∏ ሻሻݐሺݖሺܯ


ୀଵ . 

Obviously, ݄൫ݖሺݐሻ൯  0, ∑ ݄൫ݖሺݐሻ൯ ൌ 1, ݅ ൌ 1, 2, … ݎ
ୀଵ . 

 

4 Stability Analysis 

Now we’ll look at the impulsive fuzzy system’s numerous stability (9) by considering the following theorems. 

4.1 Theorem 

Assume that ߣ  is maximum eigen value of  ሾܣ
்  ሿ ሺ݅ܣ ൌ 1, 2, 3, … ሻݎ . Let ߣሺߙሻ ൌ maxሼߣሽ, 0 ൏ ߜ ൌ

  ߬ െ ߬ିଵ ൏ ∞ is an impulsive distance. If ߣሺߙሻ  0 and there exists a constant scalar ߳  1 and a semi-

positive matrix ܲ, such that: 

lnሺߚߝሻ  ߜሻߙሺߣ  0                                                                  (11) 

where 

ܲ ൌ ,ܥ்ܥ ߚ  ൌ ܫሺܥ ݔܽ݉   ሻ                                                    (12)ܭ

then the system (9-10) is stable globally and asymptotically. 

4.2 Theorem 

Assume that ߣ  is maximum eigen value of  ሾܣ
்  ሿ ሺ݅ܣ ൌ 1, 2, 3, … ሻݎ . Let ߣሺߙሻ ൌ maxሼߣሽ, 0 ൏ ߜ ൌ

  ߬ െ ߬ିଵ ൏ ∞is an impulsive distance. If ߣሺߙሻ ൏ 0 and thereexists a constant scalar 0  ߳  െߣሺߙሻ, such 

that 

lnሺߚሻ െ ߜߝ  0                                                                           (13) 

where 

ܣܲ ൌ ,ܲܣ ܲ ൌ ,ܥ்ܥ ߚ  ൌ ܫሺܥ ݔܽ݉   ሻ                                (14)ܭ

then the system (9-10) is stable globally and exponentially. 

 

5 Numerical Simulation 

Since most of the biological systems are complex, they should be expressed by applying a fuzzy logical 

framework that includes expressive reports. The suggested impulsive T-S design model examines the predator-

prey system with functional response and impulsive impacts. 

By using fuzzy impulsive T-S design model on (6), the membership functions obtained as- 

ଵܯ ൌ
௭భ
ௗభ

ଶܯ, ൌ
ௗభି௭భ
ௗభ

, ଵܰ ൌ
௭మ
ௗమ

, ଶܰ ൌ
ௗమି௭మ
ௗమ

ଵܭ, ൌ
௭య
య
ಲశభ

ଶܭ, ൌ
య
ಲశభ

ି௭య
య
ಲశభ

, ଵܲ ൌ
௭ర
ఉௗయ

, ଶܲ ൌ
ఉௗయି௭ర
ఉௗయ

 

since we have 16 rules, the matrices ܣଵ, ,ଶܣ ,ଷܣ … ,  :ଵare obtained asܣ

ଵܣ ൌ 
ݎ 0 0
0 ሺܤ െ ሻܦ 0
0 0 െߛ

൩,ܣଶ ൌ 
ݎ െ ݁݀ଵ 0 0

0 ሺܤ െ ሻܦ 0
0 0 െߛ

൩,ܣଷ ൌ 
ݎ െ ݉݀ଶ 0 0

ଵ݂݉݀ଶ ሺܤ െ ሻܦ 0
0 0 െߛ

൩, 

218



Network Biology, 2024, 14(3): 215-227 

 IAEES                                                                                      www.iaees.org

ସܣ ൌ

ۏ
ێ
ێ
ێ
ݎۍ െ

ௗయ
ାௗభ

0 0

0 ሺܤ െ ሻܦ 0
మௗయ
ାௗభ

0 െےߛ
ۑ
ۑ
ۑ
ې
ହܣ, ൌ 

ݎ 0 0
0 െ݀ߚଷ  ሺܤ െ ሻܦ 0
0 ଷ݀ߚ െߛ

൩, 

ܣ ൌ 
ݎ െ ݁݀ଵ െ ݉݀ଶ 0 0

ଵ݂݉݀ଶ ሺܤ െ ሻܦ 0
0 0 െߛ

൩, ܣ ൌ

ۏ
ێ
ێ
ێ
ݎۍ െ ݁݀ଵ െ

ௗయ
ାௗభ

0 0

0 ሺܤ െ ሻܦ 0
మௗయ
ାௗభ

0 െےߛ
ۑ
ۑ
ۑ
ې
,  

଼ܣ ൌ 
ݎ െ ݁݀ଵ 0 0

0 െ݀ߚଷ  ሺܤ െ ሻܦ 0
0 ଷ݀ߚ െߛ

൩,ܣଽ ൌ

ۏ
ێ
ێ
ێ
ݎۍ െ ݉݀ଶ െ

ௗయ
ାௗభ

0 0

ଵ݂݉݀ଶ ሺܤ െ ሻܦ 0
మௗయ
ାௗభ

0 െےߛ
ۑ
ۑ
ۑ
ې
,  

ଵܣ ൌ 
ݎ െ݉݀ଶ 0 0
ଵ݂݉݀ଶ െ݀ߚଷ  ሺܤ െ ሻܦ 0
0 ଷ݀ߚ െߛ

൩,ܣଵଵ ൌ

ۏ
ێ
ێ
ێ
ݎۍ െ

ௗయ
ାௗభ

0 0

0 െ݀ߚଷ  ሺܤ െ ሻܦ 0
మௗయ
ାௗభ

ଷ݀ߚ െےߛ
ۑ
ۑ
ۑ
ې
, 

ଵଶܣ ൌ

ۏ
ێ
ێ
ێ
ݎۍ െ ݁݀ଵ െ ݉݀ଶ െ

ௗయ
ାௗభ

0 0

ଵ݂݉݀ଶ ሺܤ െ ሻܦ 0
మௗయ
ାௗభ

0 െےߛ
ۑ
ۑ
ۑ
ې
ଵଷܣ, ൌ 

ݎ െ ݁݀ଵ െ ݉݀ଶ 0 0
ଵ݂݉݀ଶ െ݀ߚଷ  ሺܤ െ ሻܦ 0
0 ଷ݀ߚ െߛ

൩, 

ଵସܣ ൌ

ۏ
ێ
ێ
ێ
ݎۍ െ ݁݀ଵ െ

ௗయ
ାௗభ

0 0

0 െ݀ߚଷ  ሺܤ െ ሻܦ 0
మௗయ
ାௗభ

ଷ݀ߚ െےߛ
ۑ
ۑ
ۑ
ې
ଵହܣ , ൌ

ۏ
ێ
ێ
ێ
ݎۍ െ ݉݀ଶ െ

ௗయ
ାௗభ

0 0

ଵ݂݉݀ଶ െ݀ߚଷ  ሺܤ െ ሻܦ 0
మௗయ
ାௗభ

ଷ݀ߚ െےߛ
ۑ
ۑ
ۑ
ې
, 

ଵܣ ൌ

ۏ
ێ
ێ
ێ
ێ
ݎۍ െ ݁݀ଵ െ ݉݀ଶ െ

݊݀ଷ
ܣ  ݀ଵ

0 0

ଵ݂݉݀ଶ െ݀ߚଷ  ሺܤ െ ሻܦ 0
ଶ݂݊݀ଷ
ܣ  ݀ଵ

ଷ݀ߚ െߛ
ے
ۑ
ۑ
ۑ
ۑ
ې

 

Therefore, Deffuzification is given as  

ሻݐሶሺݔ ൌ ∑ ݄൫ݖሺݐሻ൯ܣሺݔሺݐሻሻ

ୀଵ                                                        (15) 

where 

݄ଵ ൌ ଵܯ כ ଵܰ כ ଵܭ כ ଵܲ, ݄ଶ ൌ ଶܯ כ ଵܰ כ ଵܭ כ ଵܲ,݄ଷ ൌ ଵܯ כ ଶܰ כ ଵܭ כ ଵܲ, ݄ସ ൌ ଵܯ כ ଵܰ כ ଶܭ כ ଵܲ,  

݄ହ ൌ ଵܯ כ ଵܰ כ ଵܭ כ ଶܲ,݄ ൌ ଶܯ כ ଶܰ כ ଵܭ כ ଵܲ,݄ ൌ ଶܯ כ ଵܰ כ ଶܭ כ ଵܲ, ଼݄ ൌ ଶܯ כ ଵܰ כ ଵܭ כ ଶܲ, 

݄ଽ ൌ ଵܯ כ ଶܰ כ ଶܭ כ ଵܲ, ݄ଵ ൌ ଵܯ כ ଶܰ כ ଵܭ כ ଶܲ, ݄ଵଵ ൌ ଵܯ כ ଵܰ כ ଶܭ כ ଶܲ,  

݄ଵଶ ൌ ଶܯ כ ଶܰ כ ଶܭ כ ଵܲ, ݄ଵଷ ൌ ଶܯ כ ଵܰ כ ଶܭ כ ଶܲ, ݄ଵସ ൌ ଵܯ כ ଶܰ כ ଶܭ כ ଶܲ, 

݄ଵହ ൌ ଶܯ כ ଶܰ כ ଵܭ כ ଶܲ, ݄ଵ ൌ ଶܯ כ ଶܰ כ ଶܭ כ ଶܲ 

 

This Fuzzy model is a suitable representation of the non-linear system (6) in the region ሾ0,10ሿ ൈ ሾ0,10ሿ ൈ

ሾ0,10]. 

 

6 Results and Discussion 

In this section, the global stability of the considered intra-specific competition predator-prey model (6) is 

discussed. Because biological systems are complicated, nonlinear, and unpredictable, fuzzy logical methods 
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with linguistic descriptions should be used to represent them. 

 

 

Table 1  Stability of the system at various parameters. 

ܤሺ ߚ ଵ݂ ଶ݂ ܣ ݊ ݉ ݎ
െ ሻܦ

ଵ ݀ଶ݀ ݁ ߛ ݀ଷ maxሺߣሻ
ൌ  ሻߙሺߣ

ln൫ߚߝ൯
 ߜሻߙሺߣ

Conclu-
sion 

0.5 0.31 0.25 0.5 0.31 0.18 0.25 0.31 0.12 0.0005 10 10 10 0.87 -1.41 stable 

0.1 0.5 0.5 0.5 0.2 0.2 0.5 0.45 0.2 25 30 30 30 0.95 -1.408 stable 

3.8 0.5 2 0.3 1.25 1.5 0.15 2 0.3 3 20 20 20 50.34 -0.4202 stable 

2.5 0.25 0.25 0.25 1.75 2.27 0.5 6 0.3 15 25 25 25 73.74 0.0478 unstable 

 

 

Fig. 1 Effect of infection transmission rate (β) on prey-predator system under impulsive control. 

 

Calculations were carried by taking the values of the parameters at ݎ ൌ 0.5, ݉ ൌ 0.31, ݊ ൌ 0.25, ܣ ൌ

0.5, ଵ݂ ൌ 0.31, ଶ݂ ൌ 0.18, ሺܤ െ ሻܦ ൌ 0.31, ߚ ൌ 0.25, ߛ ൌ 0.12, ݁ ൌ 0.0005,  ݀ଵ ൌ 10,  ݀ଶ ൌ 10,  ݀ଷ ൌ

10 in 7 to get the eigen values of ሾܣ
்  ሿሺ݅ܣ ൌ 1,2,3…  ሻas explained in the theorems (4.1, 4.2). It is foundݎ

that maxሺߣሻ ൌ ሻߙሺߣ ൌ 0.87  then we have chosen ݀݅ܽ݃ሾെ0.84, െ0.84ሿ  as impulsive control matrix, such 

thatߚ ൌ ܫ   ൌ ܭ 0.16 . It is noted that the system 7 is stable globally (4.1) when ߝ ൌ 1.5, ߜ ൌ 0.02  (at 

thoseabove values, lnሺߚߝሻ  ߜሻߙሺߣ ൌ െ1.41<0). Further, it is noted that the predator-preymodel is unstable 

(4.1) when ݎ ൌ 2.5, ݉ ൌ 0.25, ݊ ൌ 0.25, ܣ ൌ 0.25, ଵ݂ ൌ 1.75, ଶ݂ ൌ 2.27, ሺܤ െ ሻܦ ൌ 6, ߚ ൌ 0.5, ߛ ൌ 0.3,
݁ ൌ 15,  ݀ଵ ൌ 25,  ݀ଶ ൌ 25,  ݀ଷ ൌ 25 , sincemaxሺߣሻ ൌ ሻߙሺߣ ൌ 73.74 ,  ՜ lnሺߚߝሻ  ߜሻߙሺߣ ൌ 0.0478  0 . 

Table. 1 presents the stability of the system at various values of the present study. 

The impact of the various parameters on prey-predator system (3-5) with T-S fuzzy impulsive control 

model is presented in Figs. 1 - 10. 

The effect of infection parameter ሺߚሻon prey-predator system is shown in Fig.1 at ݎ ൌ 0.5, ݉ ൌ 0.31,

݊ ൌ 0.25, ܣ ൌ 0.5, ଵ݂ ൌ 0.31, ଶ݂ ൌ 0.18, ሺܤ െ ሻܦ ൌ 0.31, ߛ ൌ 0.12, ݁ ൌ 0.0005,  ݀ଵ ൌ 10,  ݀ଶ ൌ

10,  ݀ଷ ൌ 10. This graph makes it abundantly evident that asinfection rates rise, so do the populations of 
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infected predators. 

 

 

Fig. 2 Effect of disease mortality (γ) on prey-predator system under impulsive control. 

 

The influence of disease mortality ߛ on prey-predator system is shown in Fig. 2 at  ݎ ൌ 0.5, ݉ ൌ 0.31,

݊ ൌ 0.25, ܣ ൌ 0.5, ଵ݂ ൌ 0.31, ଶ݂ ൌ 0.18, ሺܤ െ ሻܦ ൌ 0.31, ߚ ൌ 0.25, ݁ ൌ 0.0005,   ݀ଵ ൌ 10,  ݀ଶ ൌ

10,  ݀ଷ ൌ 10. This figure clearly exhibits that an increase in disease mortality leads increase in susceptible 

predator population decreases slowly whereas the infected predator population decreases faster. 

The consequences of intra-specific competition ሺ݁ሻ on prey-predator system is shown in Fig. 3 at ݎ ൌ 0.5,

݉ ൌ 0.31, ݊ ൌ 0.25, ܣ ൌ 0.5, ଵ݂ ൌ 0.31, ଶ݂ ൌ 0.18, ሺܤ െ ሻܦ ൌ 0.31, ߚ ൌ 0.25, ߛ ൌ 0.12,  ݀ଵ ൌ

10,  ݀ଶ ൌ 10,  ݀ଷ ൌ 10. This graph demonstrates how less intraspecificcompetition between prey and predator 

results in a rise in the population of prey. 

The change on prey-predator system with growth rate of prey ሺݎሻ is shown in Fig. 4 at  ݉ ൌ 0.31, ݊ ൌ

0.25, ܣ ൌ 0.5, ଵ݂ ൌ 0.31, ଶ݂ ൌ 0.18, ሺܤ െ ሻܦ ൌ 0.31, ߚ ൌ 0.25, ߛ ൌ 0.12, ݁ ൌ 0.0005,   ݀ଵ ൌ 10,  ݀ଶ ൌ

10,  ݀ଷ ൌ 10. This figure clearly exhibits that increase in growth rate of prey leads to increase in the prey 

population and the population of the predator become stable. 
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Fig. 3  Effect of inter-specific competition (e) on prey-predator system under impulsive control. 

 

Fig. 4 Effect of growth rate of prey (r) on prey-predator system under impulsive control. 

 

The outcome with varying predation rate of susceptible predator ሺ݉ሻ on prey-predator system is shown in 

Fig. 5 at ݎ ൌ 0.5,   ݊ ൌ 0.25, ܣ ൌ 0.5, ଵ݂ ൌ 0.31, ଶ݂ ൌ 0.18, ሺܤ െ ሻܦ ൌ 0.31, ߚ ൌ 0.25, ߛ ൌ 0.12, ݁ ൌ

0.0005,  ݀ଵ ൌ 10,  ݀ଶ ൌ 10,  ݀ଷ ൌ 10. This graph demonstrates unambiguously how an increase in a predator’s 

predation rate causes a drop in the population of its prey. 
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Fig. 5 Effect of predation rate of susceptible predator (m) on prey-predator system under impulsive control. 

 

Fig. 6 Effect of predation rate of infected predator (n) on prey-predator system under impulsive control. 

 

The impact of predation rate of infected predator ሺ݊ሻ  on prey-predator system is shown in Fig. 6 at 

ݎ ൌ 0.5, ݉ ൌ 0.31, ܣ ൌ 0.5, ଵ݂ ൌ 0.31, ଶ݂ ൌ 0.18, ሺܤ െ ሻܦ ൌ 0.31, ߚ ൌ 0.25, ߛ ൌ 0.12, ݁ ൌ

0.0005,  ݀ଵ ൌ 10,  ݀ଶ ൌ 10,  ݀ଷ ൌ 10 . This graph illustrate clearly how an infected predator’s increased 

predation rate causes a drop in the number of prey. 
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Fig. 7 Effect of max time (d1) on prey-predator system under impulsive control. 

 

Fig. 8 Effect of max time (d2) on prey-predator system under impulsive control. 

 

The dynamical change on prey- predator population ሺݔ, ,ݏ ݅ሻ  by varying prey maxtime ሺ݀ଵሻ  parameter 

under fuzzy impulsive control can be noted in Fig. 7 at ݎ ൌ 0.5, ݉ ൌ 0.31, ݊ ൌ 0.25, ܣ ൌ 0.5, ଵ݂ ൌ 0.31,

ଶ݂ ൌ 0.18, ሺܤ െ ሻܦ ൌ 0.31, ߚ ൌ 0.25, ߛ ൌ 0.12, ݁ ൌ 0.0005,  ݀ଶ ൌ 10,  ݀ଷ ൌ 10 . It is noticed from this 

figure that; the prey population increases as ݀ଵdecreases. 

The effectiveness by varying susceptible predator max time ሺ݀ଶሻ parameter of prey-predatorpopulation 

ሺݔ, ,ݏ ݅ሻ under fuzzy impulsive control can be noted in Fig. 8 at  ݎ ൌ 0.5, ݉ ൌ 0.31, ݊ ൌ 0.25, ܣ ൌ 0.5, ଵ݂ ൌ

0.31, ଶ݂ ൌ 0.18, ሺܤ െ ሻܦ ൌ 0.31, ߚ ൌ 0.25, ߛ ൌ 0.12, ݁ ൌ 0.0005,  ݀ଵ ൌ 10,  ݀ଷ ൌ 10 . It is noted from 

this figure that, the prey population increases as ݀ଶdecreases. 

The vital pattern of prey- predator population ሺݔ, ,ݏ ݅ሻby varying infected predatormax time ሺ݀ଷሻparameter 

under fuzzy impulsive control can be noted in Fig. 9 at ݎ ൌ 0.5, ݉ ൌ 0.31, ݊ ൌ 0.25, ܣ ൌ 0.5, ଵ݂ ൌ 0.31,

ଶ݂ ൌ 0.18, ሺܤ െ ሻܦ ൌ 0.31, ߚ ൌ 0.25, ߛ ൌ 0.12, ݁ ൌ 0.0005,  ݀ଵ ൌ 10,  ݀ଶ ൌ 10. It is observed from this 

figure that, the prey population increases, and predator population decreases with an increase in ሺ݀ଷሻ. 

Finally, the nature of two species ሺݔ, ,ݏ ݅ሻpopulation (without impulsive control) is presented in Fig. 10 by 

fixing all the parameters obtained from T-S fuzzy model at ݎ ൌ 0.5, ݉ ൌ 0.31, ݊ ൌ 0.25, ܣ ൌ 0.5, ଵ݂ ൌ
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0.31, ଶ݂ ൌ 0.18, ሺܤ െ ሻܦ ൌ 0.31, ߚ ൌ 0.25, ߛ ൌ 0.12, ݁ ൌ 0.0005,   ݀ଵ ൌ  10,  ݀ଶ ൌ 10,  ݀ଷ ൌ 10 and 

initial condition ݔሺ0ሻ ൌ 5, ሺ0ሻݏ ൌ 5, ݅ሺ0ሻ ൌ 5, ݐ ൌ 5 . The figure clearly shows how the prey- predator 

population reaches to stability whereas infected predator becomes unstable. 

 

 
 

Fig. 9 Effect of max time (d3) on prey-predator system under impulsive control. 

 

7 Conclusions 

In this paper we present stability analysis of a three species competition model with fuzzy impulsive control by 

T-S model. Firstly, a non-linear Lotka-Volterra predator-prey model with infection in predator based on the 

fuzzy impulsive control was analyzed. The impulsive control technique which was analyzed in the framework 

of the fuzzy systems based on T-S model, is found appropriate for very complex and non-linear system with 

impulsive effects. Then, the complete impulsive fuzzy system is obtained by combining each local linear 

impulsive system. Meantime, the asymptotic stability, and exponential stability of the impulsive fuzzy system 

are shown by various stability theorems. Finally, numerical examples for prey, susceptible predator and 

infected predator system with impulsive effects are given to illustrate the application of impulsive fuzzy 

control, and simulation results show the effectiveness of the proposed method. From this present study the 

main findings are listed as: 

 We establish a predator–prey model in which predator population is infected. 

 Less intra-specific competition between prey and predator results in a rise in the population of prey 

because of the infection in predators. 

 A rise in the prey population results from an increase in the prey growth rate. 

 The population of healthy predators decreases as the rate of disease transmission from diseased to 

susceptible predators rises because more predators will contract the disease. 

  As the maximum period for prey diminishes, the prey population grows. 

 Because predators will have less time for predation as the maximum period forsusceptible predators 

gets shorter, the number of preys rises. 
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 While the population of prey increases as the maximum time for an infected predator increase, the 

population of susceptible predators decreases because more predators will contract the infection. 

 

 

Fig. 10 Plot of predator-prey system without impulsive control. 
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