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Abstract 

 

Mendelian randomization (MR) is a methodology for evaluating causality in observational studies. MR tries to 

find the fact that genotypes are not susceptible to reverse causation and confounding based on Mendel’s law of 

inheritance. MR may provide information on causality in situations where randomized controlled trials are 

impossible. In present article, the principles and methods of MR were fully discussed. 
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1 Introduction 

Causal inference is a research focus in science. In a broad sense, the statistical modeling between known 

dependent variable(s) and known independent variable(s) is categorized as causal inference. For example, 

construct a linear regression between the dependent variable, y, and the independent variable, x. However in 

many cases we do not know which is dependent variable or independent variable in two variables with causal 

relationship, i.e., the direction of causality is unknown. For such a case, Zhang (2021a-c) proposed three 

methodologies for determining causality direction. The first is a statistical simulation and regression 

methodology for causality inference of linearly correlated (scale or interval) variables (Zhang, 2021b). In this 

methodology, a statistical simulation and regression method was developed to generate and analyze artificial 

data of linear correlated variables with known causality. The rule was drawn from the simulation and 

regression analysis on artificial data. Finally, causality inference of two linearly correlated variables was 

conducted based on the rule (Zhang, 2021b). The second is a statistical simulation methodology for causality 

inference of Boolean variables (Zhang, 2021a). In this methodology, the statistical simulation was used to 

generate artificial data of two Boolean variables with known independent and dependent variables. A law was 
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drawn from the simulation analysis of the artificial data. For a set of data of two Boolean variables, a 

randomization method was proposed and used to test the statistical significance of the Boolean correlation 

measure (point correlation, quartile correlation, or Jaccard correlation, etc.). The causality inference was then 

conducted to observed data based on the law. Finally, the statistical simulation was used to determine the 

statistic significance of the causality (Zhang, 2021a). The third is a statistical simulation methodology for 

causality inference of nominal variables (i.e., categorical variables). In this methodology, a statistical 

simulation method was developed to generate artificial data of nominal variables with known causality. The 

law was then drawn from the simulation analysis of the artificial data. For a set of data of two nominal 

variables, the randomization method was used to test the statistical significance of thnominal correlation 

measure, and then the statistical simulation was used to determine the causality and its statistic significance of 

two nominal variables (Zhang, 2021c). 

Mendelian randomization (MR) is the methodology for evaluating causality in observational studies. MR 

has the potential to provide information on causality in many situations where randomized controlled trials are 

not possible. It is widely used in epidemiological, pharmacological and public health research, especially in 

evaluating the impact of lifestyle factors, genetic susceptibility and drug targets on disease risk. For example, 

in the study of cardiovascular disease, cancer and metabolic diseases, MR methods help identify new risk 

factors and potential intervention targets. 

   Numerous studies using MR have been conducted in the last years (Zheng et al., 2017). Researhers used 

MR to report associations between various micronutrients and the risk of various cancers (Fu et al., 2021; 

Papadimitriou et al., 2021; Yuna et al., 2022). A mendelian randomization study that used genetic variants 

revealed no significant association between underlying propensities to differing caffeine metabolism and the 

risk of incident arrhythmia (Kim et al. (2021). Using single-nucleotide polymorphisms associated with 

micronutrient levels as instrumental variables, Kim et al. (2023) obtained instrumental variables of 14 

genetically predicted micronutrient (vitamins and minerals) levels and applied two-sample MR to estimate 

their causal effects on 22 cancer outcomes from a meta-analysis of the UK Biobank (UKB) and FinnGen 

cohorts (overall cancer and 21 site-specific cancers). Results showed increased risk of breast cancer with 

magnesium levels and increased risk of colorectal cancer with vitamin B12 level. Zhu et al. (2024) conducted 

two-sample bidirectional Mendelian randomization (MR) analyses by using independent genetic variants 

associated with multiple social isolation phenotypes and with depression as genetic instruments from 

genome-wide association studies to evaluate the causality between social isolation and onset of depression. In 

two-sample bidirectional MR, the genetically predicted loneliness and social isolation combined phenotype 

(LNL-ISO) was positively associated with occurrence of depression. Henry et al. (2022) implemented a 

Mendelian randomization model that accounted for linkage disequilibrium between instruments and tested the 

robustness of causal estimates through a multiverse sensitivity analysis that included up to 120 combinations 

of instrument selection parameters and Mendelian randomization models per protein. The druggability of 

candidate proteins was surveyed, and mechanism of action and potential on-target side effects were explored 

with cross-trait Mendelian randomization analysis. Eight circulating proteins were associated with incident HF 

and showed evidence of a causal relationship. In DePaolo et al. (2023), causal effects of BP on AscAoD were 

estimated using 2-sample Mendelian randomization using a range of pleiotropy-robust methods. Rasooly et al. 

(2023) performed Mendelian randomization and colocalization analyses on human proteins to provide putative 

causal evidence for the role of druggable proteins in the genesis of heart failure. Using a combination of 

Mendelian randomization proteomics and genetic cis-only colocalization analyses, they identified 10 

additional putatively causal genes for heart failure. Deng et al. (2023) performed univariable and 

multivariable-adjusted MR with adjustments for body mass index (BMI) and physical activity (PA), and found 
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that frailty was significantly associated with elevated risks of PD. 

   In present article, the principles and methods of MR will be discussed in detail. 

 

2 Principles of Mendelian Randomization 

2.1 Complexity of causality 

A common problem in association analysis is that it is difficult to determine whether a variable is a true causal 

variable, rather than other unobserved factors that affect both the variable and the outcome, thus causing the 

variable to be associated with the outcome. In situations as evidence-based medicine or when formulating 

intervention strategies, it is necessary to clarify causality. 

This problem is actually related to endogeneity (endogeneity in statistics refers to the correlation between 

the explanatory variable (x) and the error term in regression analysis), including reverse causation, omitted 

variable bias due to confounding, measurement error, and bidirectional causality (GWASLab, 2024). 

   For example, the relationship between obesity and heart disease may have four different scenarios (XM, 

2024): 

(A) Causality: i.e., true causality. There is a potential direct effect from obesity to heart disease. However, 

there may be confounding factors, which are other variables that affect both obesity and heart disease. 

(B) Confounding: Due to confounding factors, although there is an association between obesity and heart 

disease, it is not causal relationship. The association may be caused in whole or in part by unidentified 

confounders that affect both, but there is no direct causal relationship between obesity and heart disease. 

(C) Reverse causality: reverse causality, i.e., heart disease may cause obesity. This is the opposite of the 

situation (A), indicating that causality may be in the opposite direction. Confounding factors still exist and 

may affect the relationship between heart disease and obesity. 

(D) Complex combination: For example, partially confounded, truly causal relationship, and bidirectional 

associations. The relationship between obesity and heart disease may be complex, involving direct and indirect 

factors, as well as confounders. There may be a direct association, reverse causation, and the influence of 

confounders at the same time. 

2.2 Mendelian Randomization (MR) 

2.2.1 Concept of Mendelian Randomization 

Mendelian randomization (MR) is a method that uses genetic variation as the instrumental variable to study the 

causal relationship between exposure factors and outcomes. It is used to explore the causal relationship 

between biological factors (such as lifestyle or biomarkers) and outcomes (such as diseases). This method is 

based on Mendel's law of inheritance and uses the random assignment characteristics of genotype to phenotype 

in nature to reduce the influence of confounding factors and make causal inference. Because genetic variation 

is randomly assigned to individuals and is not affected by confounding factors (such as environmental and 

behavioral factors), it can provide an environment similar to a randomized controlled trial, thereby helping to 

solve the common confusion problems in observational studies and improve the reliability of causal inference. 

The core of the Mendelian randomization principle is to use Mendel's second law, or the law of independent 

assortment, that is, all DNA is randomly and independently combined during meiosis (the principle of random 

allele assignment): the parents with two pairs (or more pairs) of relative traits are hybridized, when gametes 

are produced in the next generation, while alleles are separated, genes on non-homologous chromosomes show 

free combination, which is similar to random grouping in randomized controlled trials. Therefore, Mendelian 

randomization is a randomized controlled trial based on Mendel's second law (GWASLab, 2024). 
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The core of the Mendelian randomization method is to use genetic data as instrumental variables (usually 

single nucleotide polymorphisms, or SNPs) to evaluate the relationship between an exposure factor (such as 

obesity, blood pressure) and an outcome (such as heart disease). 

If a genetic variant is associated with the exposure factor of interest (X) and is not associated with the 

outcome (Y), then the genetic variant can be used as an instrumental variable (IV) (Z) to represent the exposure 

factor, thereby inferring the causal effect of the exposure factor on the outcome. In observational studies, the 

causal direction is often unclear, that is, whether X causes Y or whether Y causes X. The MR method uses 

genetic variants as instrumental variables to better help researchers determine the causal direction, thereby 

solving the common confounding and reverse causal problems in observational studies and drawing 

conclusions that are closer to causality. 

2.2.2 Three basic assumptions of MR 

In MR analysis, in order to ensure the validity and reliability of the results, three basic assumptions need to be 

met: 

(1) Association hypothesis: The selected genetic variation Z must be reliably associated with the exposure 

factor X under study (the instrumental variable Z must have a strong association with the exposure factor X). 

This means that genetic variation should directly influence exposure factors. For example, genetic variants 

found to be significantly associated with exposure factors in genome-wide association studies (GWAS) can 

serve as instrumental variables. 

(2) Independence assumption: The selected genetic variation Z has nothing to do with any known or unknown 

confounding factors U (the genetic variation cannot be related to any possible confounding factors, that is, the 

instrumental variable Z has nothing to do with any confounding factors). This means that the assignment of 

genetic variants should be random and undisturbed by other factors that influence exposure and outcome. 

(3) Exclusion restriction hypothesis: Genetic variation Z affects outcome Y only through exposure factor X. 

This means that the effect of a gene on a disease outcome must be through the exposure factor, rather than the 

gene itself directly affecting the outcome. 

   In addition, it is also required to meet (GWASLab, 2024): 

(4) There is no genetic assortative mating. For example, people often marry people with similar educational 

and economic levels. 

(5) For all individuals, the direction of influence of instrumental variables on exposure factors is the same. For 

example, potential epistatic effects and GxE gene-environment interactions may influence this hypothesis. 

The association between variables X and Y will definitely be affected by the potential confounding factor U, 

but there is no potential confounding factor between the instrumental variable Z and variable X, and between 

variable Z and variable Y. The association between variables X and Y cannot be obtained through direct 

observation, because variable X cannot be measured directly; but Z is measurable, and the direct association 

between Z and X is known or measurable, and it exists independently of other factors. Genetic variants (such as 

SNPs) that are strongly associated with exposure factors and follow the Mendelian randomization assumptions 

should be selected as instrumental variables, and the frequency of the variant, the strength of association with 

the exposure, and the biological interpretability need to be considered. 

2.2.3 Comparison of Mendelian Randomization (MR) and Randomized Controlled Trial (RCT) 

Generally speaking, the gold standard for clarifying causal relationships is the randomized controlled trial 

(RCT) (Zhang, 2024b), which means that the subjects are randomly divided into a control group and an 

experimental group to study the impact of a certain factor. However, in reality, it is very difficult to complete a 

randomized controlled trial, which requires a lot of manpower and material resources. Sometimes, due to 
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ethical issues, it is almost impossible to study a certain factor. At this time, other methods must be used, and 

Mendelian randomization is an alternative. 

Mendelian randomization (MR) and randomized controlled trial (RCT) have similarities and differences in 

purpose, method, data type, cost, applicability, etc. In general, MR is directly related to RCT, and the two have 

high similarities. 

Randomized controlled trials are experimental design methods that study the effects of intervention 

measures by randomly assigning participants to the experimental group and the control group (random 

allocation to the two groups). It is a more direct experimental design suitable for directly evaluating the impact 

of a specific intervention on the results. Randomized controlled trials reduce bias by randomly allocating key 

elements in experimental design, and control known and unknown confounders (confounders are expected to 

be equally distributed in the two groups) through random allocation. Intervention measures are fully 

controllable. In a randomized controlled trial, prospectively collected experimental data are used. 

Mendelian randomization is an indirect method that relies on genetic data and uses the random assignment 

properties of genotype to phenotype (wild-type allele, variants) to explore potential causal relationships. 

Mendelian randomization is based on Mendel's law of inheritance and uses the random assignment of genetic 

variants (random segregation of genetic variants or alleles influencing exposure) as natural randomization. 

Mendelian randomization relies on the randomness of genetic variants to reduce the influence of confounding 

factors. The results are uncontrollable and determined by genetic variants. In Mendelian randomization, 

existing genetic and disease data are mainly used. 

RCT directly changes weight through intervention measures (supplements) and observes the results, which 

is suitable for evaluating the effect of specific interventions. However, this design may require more resources, 

including time and cost, and may face ethical issues. 

MR uses genetic variants to indirectly evaluate the relationship between exposure X (such as weight) and 

outcome Y (such as the risk of heart disease). Genetic variants are randomly assigned at birth and are not 

affected by acquired lifestyle and environmental factors, which helps to exclude confounding factors and 

reverse causality. In this way, MR can provide evidence that is closer to randomized controlled trial than 

observational studies. This is because in randomized controlled trials, interventions are randomly assigned to 

exclude the influence of confounding factors. Similarly, MR uses genetic variation as a natural randomization 

tool, providing a unique way to understand potential causal relationships. MR studies are able to reveal 

potential causal relationships between outcome Y (such as rare diseases) and exposure X (modifiable risk 

factors), while exploring such relationships in RCTs may require large sample sizes (Zhang, 2024a, b) and 

long-term follow-up. However, the interpretation of MR analysis results needs to be cautious because genetic 

effects may involve multiple biological pathways. 

Both designs have advantages and limitations, and the choice of which design depends on the purpose of 

the study, available resources, and data. Ideally, the combination of the two methods can provide more 

comprehensive and reliable conclusions. 

   For example, to study the effect of weight gain on the risk of heart disease, studies can be designed using 

randomized controlled trial (RCT) and Mendelian randomization (MR), respectively. The following are the 

specific steps and characteristics of two designs: 

(1) Randomized controlled trial (RCT) 

Purpose: Directly evaluate the effect of weight gain (through supplements) on the risk of heart disease. 

Participant allocation: Randomly divide participants into two groups, one receiving supplement treatment 

(experimental group) and the other receiving placebo (control group). 
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Experimental design: Ensure that the two groups of participants have similar health status and background 

variables before starting the experiment to reduce the influence of confounding factors. 

Intervention measures: The experimental group takes supplements at a specific dose and time, while the 

control group takes a placebo. 

Data collection: The weight of participants is measured regularly and their heart disease incidence is tracked. 

Result analysis: Compare the incidence of heart disease in the two groups and evaluate the relationship 

between weight gain and heart disease risk. 

(2) Mendelian randomization (MR) 

Purpose: Use genetic variants as instrumental variables to indirectly evaluate the effect of weight gain on the 

risk of heart disease. 

Genetic variation selection: Select genetic variants related to weight (such as specific SNPs) as instrumental 

variables. 

Participant allocation: "Randomized" grouping based on whether the participant carries the allele that increases 

weight. 

Data collection: Collect the genetic data of the participants, measure their weight, and track the incidence of 

heart disease. 

Result analysis: Use statistical methods to analyze the differences in the incidence of heart disease among 

participants carrying different alleles, so as to infer the causal relationship between weight and heart disease 

risk. 

2.2.4 Instrumental variable for MR 

The statistical essence of Mendelian randomization is to use the instrumental variable to study causality, which 

is often used in economic research. In simple terms, an instrumental variable is a variable that is related to the 

exposure factor X but is unrelated to the ignored confounding factors and the outcome Y. In genetics, the 

instrumental variable is the gene. The advantages of using genotype as an instrumental variable are: (1) In 

genetic correlation, the direction of causality is determined, and genetic diversity leads to different phenotypes, 

but the opposite is not true. (2) In general, the environmental exposure factors we measure are more or less 

related to behavioral, social, psychological and other factors, which causes bias. However, genetic variation is 

not affected by these confounding factors. (3) Relatively speaking, the measurement error between genetic 

variation and its effect is small. (4) It is not necessary to find a causal SNP - a SNP in linkage disequilibrium 

with the causal SNP can meet the hypothesis. (5) Currently, GWAS data is relatively easy to obtain 

(GWASLab, 2024). 

   Some instrumental variables commonly used in MR research and their application methods are as follows: 

(I) Single nucleotide polymorphism (SNP) 

Single Nucleotide Polymorphism (SNP) refers to the variation of a single nucleotide in the DNA sequence. 

They are a key component of genetic diversity and are closely linked to genetic diseases in humans. In MR 

analysis, SNPs that are significantly associated with exposure factors are selected as instrumental variables. 

These SNPs should meet the condition of frequency greater than 1% and have a reliable association with the 

exposure factor under study. In Mendelian randomization studies, these SNPs (single nucleotide 

polymorphisms) should meet the condition that the frequency is greater than 1%, which means that the 

frequency of SNP variants selected as instrumental variables should exceed 1% in the population. This 

condition is based on the following considerations: (1) Genetic diversity: SNP is the variant form of a single 

nucleotide in the DNA sequence and is one of the main sources of human genetic diversity. Within a certain 

population, a specific SNP can be present with varying frequencies. (2) The importance of variant frequency: 

When conducting genetic correlation studies, we usually focus on those genetic variants that are relatively 
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common in the population. If the frequency of a SNP is very low (e.g., less than 1%), it may not be 

representative of the general genetic trend in the population and may not be statistically significant. (3) 

Representativeness and reliability of the study: Selecting SNPs with a frequency greater than 1% as 

instrumental variables can help ensure that the research results have broader representativeness and reliability. 

Such SNPs are more likely to reflect genetic trends prevalent in the population, making the research results 

more generalizable and applicable. 

(II) Genome-wide association studies (GWAS) 

Genome-Wide Association Studies (GWAS) data is a general term for a series of data that reflects the impact 

of SNPs on phenotypes. GWAS data provides association information between genotype and phenotype and is 

the basis of MR analysis. Through GWAS data, researchers can find SNPs that are significantly associated 

with specific phenotypes (such as diseases, biomarkers). 

Commonly used genome-wide association analysis databases for MR are as follows: 

(a) OpenGWAS (https://gwas.mrcieu.ac.uk/datasets/) is the simplest, most used and public comprehensive 

genome association study (GWAS) database, which brings together a large number of GWAS results, 

including gene correlation information for various phenotypes (such as diseases, physiological characteristics, 

behavioral characteristics, etc.). Finding genetic variants (SNPs) associated with specific phenotypes, you can 

find SNPs that are associated with the phenotype of interest (for example, the exposure variable and outcome 

variable). 

(b) The GWAS Catalog (https://www.ebi.ac.uk/gwas/) is compiled by the European Bioinformatics Institute 

(EBI). It provides a consistent, searchable, visual and freely available for downloading of SNP traits-linked 

database that can be easily integrated with other resources and accessible to scientists, clinicians and other 

users around the world (Hemani et al., 2017). In this site, all eligible published GWAS studies were identified 

through literature searches and evaluated by staff, who then extracted traits, significant SNP-trait associations, 

and sample metadata addressed in the literature. The aim is to curate eligible studies based on literature 

availability within 1-2 months of article publication, with data published weekly. Submissions of unpublished 

GWAS data will also be accepted after 2020. Published GWAS data can be searched and viewed through the 

search page of the website, downloaded directly, or called through API. Aggregated data from GWAS can also 

be downloaded via FTP.  

(c) UK Biobank (http://www.nealelab.is/uk-biobank; 

https://docs.google.com/spreadsheets/d/1kvPoupSzsSFBNSztMzl04xMoSC3Kcx3CrjVf4yBmESU/edit?pli=1

#gid=227859291) collects extensive data from approximately 500,000 UK residents between the ages of 50 

and 70, including genotypes, clinical measurements, questionnaires, biological samples, etc. The UK Biobank 

project adopts a long-term tracking design to track the health and disease status of participants, so as to better 

understand the relationship between genes and diseases, and the interaction between genes and the 

environment. The free version of the UK Biobank data is updated to August 2018, and this part of the data can 

be downloaded and used for free. If you want to get more updated data, you need to pay. 

(d) FinnGen (https://www.finngen.fi/en; 

https://storage.googleapis.com/finngen-public-data-r9/summary_stats/R9_manifest.tsv) combines genomic 

information with digital healthcare data, summarizing GWAS and PheWAS results for multiple diseases, 

including genomic data from more than 1.4 million Finnish participants and electronic health records, 

combining participants' electronic health record data; the diseases are extensive, including cardiovascular, 

metabolic, cancer, mental and many other diseases. The FinnGen database allows free downloading of large 

sample size and phenotype-rich GWAS summary statistics. 

30



Network Biology, 2025, 15(2): 24-47 

 IAEES                                                                                      www.iaees.org    

(e) All of Us has identified more than 1 billion genetic variants, including more than 275 million previously 

unreported genetic variants, of which more than 3.9 million have coding consequences. Using the link between 

genomic data and longitudinal electronic health records, 3,724 genetic variants associated with 117 diseases 

were evaluated and found to have high replication rates in participants of European ancestry and participants of 

African ancestry (All of Us Research Program Genomics Investigators, 2024). 

(f) The 1000 Genomes Project (https://www.internationalgenome.org/) created the largest public catalog of 

human variation and genotype data. With the end of the project, the EMBL-EBI data center received funding 

from the Wellcome Trust and created the IGSR (International Genome Sample Resource) website to ensure the 

accessibility of the 1000 Genomes Project data. In addition to European data, the 1000G data also includes a 

lot of Asian (including Chinese) data. These data can be queried online or downloaded for use.  

(g) PAN-UKB (https://pan.ukbb.broadinstitute.org/) is a multi-ethnic study across six continents, which has 

conducted multi-ancestry analysis on 7,228 phenotypes and a total of 16,131 genome-wide association studies. 

It can be downloaded and used for free. 

(h) PGC (Psychiatric Genomics Consortium; https://www.med.unc.edu/pgc/) is the largest psychiatric biology 

survey website ever, providing GWAS summary data for mental illnesses such as depression, bipolar disorder, 

and schizophrenia. Multiple institutions have collaborated to complete multiple large-sample GWAS 

meta-analyses. 

(i) SSGAC (Social Science Genetic Association Consortium; https://www.thessgac.org/) provides GWAS data 

on behavioral genetics-related phenotypes such as education level, economic and political orientation, and 

personality. 

(j) CTGLAB (Complex Trait Genetics Lab; https://ctg.cncr.nl/) explores the genetic and environmental causes 

of individual differences in brain-related health and disease. The website integrates knowledge from different 

fields (genetics, neuroscience, bioinformatics, biology, machine learning), uses and develops analytical tools to 

analyze and understand genomic data of complex traits, and links them with neuroscience to prove causal 

relationships in laboratory experiments. 

(k) CNCR CTGLAB (https://ctg.cncr.nl/software/summary_statistics) provides GWAS summary statistics for 

more than 100 common diseases and human phenotypes, including GWAS data for metabolic, cardiovascular, 

immune, tumor and other diseases. 

(III) Linkage disequilibrium (LD) 

Linkage disequilibrium (LD) refers to the non-independent segregation of genetic variation. Adjacent gene 

variants on the same chromosome can be inherited together, and if the allele frequencies are similar, they will 

cause correlation between them. Linkage disequilibrium describes the situation where two or more SNPs 

frequently appear together in the same population. When selecting SNPs as instrumental variables, it is 

necessary to consider linkage disequilibrium and avoid selecting SNPs with high correlation due to linkage 

disequilibrium to reduce bias. 

(IV) SNP-Clumping 

This is a technique to reduce linkage disequilibrium problems by clustering SNPs that are highly associated 

with each other in the same gene region and selecting only one representative. When performing multi-SNP 

MR analysis, the SNP-Clumping technique is used to select representative SNPs. In multi-SNP MR analysis, 

in order to reduce linkage disequilibrium problems, SNPs that are highly associated with each other in the 

same gene region can be clumped together and only one representative can be selected. The process is as 

follows: First, all SNPs are ranked based on p-values (Zhang, 2022c) and the SNP with the smallest p-value is 

selected. All SNPs associated with it are removed around the SNP (e.g., within a fixed genomic window, such 

as 800kb) because they may be statistically associated with the SNP with the smallest p-value in the region. 
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This process is repeated until all SNPs have been considered or removed. 

(V) Sensitivity analysis 

Statistical methods are used to evaluate the stability and reliability of models, estimates, or results. In MR 

analysis, sensitivity analyses such as Leave-One-Out analysis and heterogeneity tests (Zhang, 2024a) are 

performed to ensure the stability of the results and reduce bias. 

(VI) Horizontal pleiotropy and vertical pleiotropy 

Pleiotropy refers to the effect of a single genetic variant on multiple phenotypes. Horizontal pleiotropy refers 

to the effect of a single nucleotide polymorphism on phenotypes of multiple biological pathways, while 

vertical pleiotropy refers to the effect of a single nucleotide polymorphism on multiple mediating pathways 

through an exposure factor. In MR analysis, pleiotropy needs to be identified and considered, especially 

horizontal pleiotropy, as it may violate the exclusion restriction assumption. 

2.2.5 General steps of MR study 

The following are the general steps of Mendelian randomization analysis. Through this process, a causal 

analysis closer to randomized controlled trials can be obtained in observational studies with confounding 

factors. For a specific outcome variable, there are many exposure factors that directly or indirectly affect it. 

Before conducting MR analysis, it is unknown which specific exposure factor will have a direct impact on the 

outcome variable. Therefore, when doing MR-related analysis, two preparations need to be made. One is 

psychological preparation, to learn to accept the fact that the results are not good; the other is to be prepared 

for both hands, to change the exposure or the outcome when the results are not good. 

(1) Select genetic variants related to exposure factors as instrumental variables. At the beginning of the MR 

study, we need to select genetic variants, usually SNPs, that are strongly correlated with the exposure factors 

(such as weight) studied from the public GWAS database (such as the UK Biobank dataset, OpenGWAS). 

These genetic variants will be used as instrumental variables. 

(2) Ensure the validity of the instrumental variable, that is, the instrumental variable meets the three basic 

assumptions of MR. 

(a) Find SNPs that are strongly correlated with the exposure factors and ensure the association. It is necessary 

to ensure that the SNPs meet the premise assumptions. To extract strongly correlated SNPs, SNPs with 

p<5*10-8 are generally selected to meet the association hypothesis. 

(b) Remove SNPs with strong linkage disequilibrium to ensure independence. The linkage disequilibrium 

coefficient refers to whether the frequency of occurrence of two or more genotypes on different alleles is 

significantly different from their true frequency in the population. The linkage disequilibrium coefficient r 

refers to the degree of linkage disequilibrium between two loci in a set of study sequences, while the r² value 

refers to the proportion of linkage disequilibrium between the two loci, that is, the explained variance of 

linkage disequilibrium. 

(c) Finally, calculate the F statistic and eliminate weak instrumental variables with F<10 or 100. The F statistic 

is used to compare the variance, goodness of fit, and significance of regression models between two or more 

groups. It is used to remove weak instrumental variables to ensure the reliability and accuracy of the results, 

and F>10 is required. 

(3) Use appropriate statistical methods for causal inference. With effective instrumental variables, a variety of 

statistical methods can be used to estimate the causal effect of exposure factors on outcome variables. 

Commonly used methods include two-stage least squares (2SLS), inverse-variance weighting (IVW), weighted 

median method, model selection method (Egger), etc. See below for details. 

(4) Conduct sensitivity analysis to evaluate the stability of the results. A sensitivity analysis method such as 

Leave-One-Out analysis can be used to examine the impact of a single SNP on the overall estimate by 
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removing one SNP in turn and re-performing the MR estimate. Methods based on Egger regression can also be 

used to detect whether there is a problem of horizontal pleiotropy. 

(a) Heterogeneity test. The purpose is to see whether different genetic variants (SNPs) have a consistent impact 

on the results. If there is heterogeneity in the results, it means that the exposure factors may have inconsistent 

effects on the outcome variable. At this time, a random effects model needs to be used to estimate the causal 

effect of the exposure factor on the outcome variable and determine whether it still has a statistically 

significant effect. Inconsistent effects found in heterogeneity tests may indicate that different genetic variants 

of the exposure factor may affect the occurrence of the outcome variable in different ways. In other words, 

there may be some specific genetic variants that have a special impact on the expression or function of the 

exposure factor, thereby affecting the occurrence of the outcome variable. Random effects models were used 

to account for these heterogeneities and re-estimate the causal effects of exposure factors on outcome variables. 

In layman’s terms, think of this process as a team: even though the performance of each team member (the 

team here can be imagined as genetic variation) may be different, their impact as a team (the team here can be 

imagined as the exposure factor) on the outcome (the outcome here can be imagined as the outcome variable) 

The impact is still significant. 

(b) Horizontal pleiotropy test. The purpose is to see whether some genetic variants (SNPs) have an undue 

influence on the relationship between exposure factors and outcome variables. Being affected by horizontal 

pleiotropy means that the SNPs of the exposure factor may have too large or too small effect on the outcome 

variable. This may be due to the fact that these SNPs affect the occurrence of outcome variables through other 

unknown pathways in addition to affecting exposure factors. This has important implications for causal 

inference. Ideally, we would like all SNPs to affect the occurrence of the outcome variable solely by affecting 

the exposure factor. However, if horizontal pleiotropy exists, then these SNPs may affect the occurrence of the 

outcome variable through other pathways, which may cause us to overestimate or underestimate the true 

impact of exposure factors on the outcome variable. 

(c) One-by-one elimination test. The purpose is to see whether the results will change significantly if a certain 

genetic variant (SNP) is removed. The results are more stable, meaning they are less likely to be affected by 

any one specific SNP. In a one-by-one elimination test, each SNP is removed in turn and then it is seen 

whether the result variable will change significantly. If the result variable does not change significantly after 

eliminating any SNP, it means that the stability of the result is high. This means that the results are unlikely to 

be affected by any one specific SNP, but are determined by all SNPs together. 

(d) Reverse MR analysis. Not only analyzes the impact of genes on a specific outcome (disease), but also 

analyzes the impact of disease on genes. By comparing the results obtained in these two directions, the causal 

relationship between genes and diseases can be more accurately evaluated and the impact of confounding 

factors can be reduced. 

(5) Interpret the results. Based on the results of MR analysis, explain the causal relationship between exposure 

factors and outcome variables. If the MR analysis shows a significant causal relationship, it can be concluded 

that the exposure factor is important for the outcome variable. If a causal relationship is not significant, further 

investigation into other potential explanations may be warranted, such as whether there are unaccounted for 

confounding factors. 

 

3 Methods of Mendelian Randomization 

If a gene variant Z (instrumental variable) is a causal variable of an exposure factor X and has no direct causal 

relationship with the outcome Y, the causal relationship between X and Y should be explored. The association 
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between gene variant Z and outcome Y can only be observed through the causal relationship between X and Y 

(X→Y) (GWASLab, 2024). 

3.1 Univariate MR 

To evaluate the causal relationship between a specific exposure and a specific outcome, one or more SNPs that 

are strongly associated with the specific exposure can be used as instrumental variables, which is univariable 

MR (Univariable MR). For example, researchers may use SNPs associated with an exposure factor to evaluate 

whether the exposure factor is associated with an increased risk of disease. 

In univariate MR, the effect of X on Y can be estimated using the two-stage least squares method (2SLS). 

Using the instrumental variable, the effect of exposure on the outcome is estimated in two stages (GWASLab, 

2024; XM, 2024). 

In the first stage, the instrumental variable is used to predict exposure, that is, X is regressed on the 

instrumental variable 

 

ܺ ൌ ߙ   ܼߛ

 

In the second stage, the predicted exposure is used to estimate the impact on the results, that is, Y is regressed 

on the predicted value of X in the first stage 

 

ܻ ൌ ߚ  ଵߚ ܺ 
 

After merging, it can be transformed into Y to directly regress the instrumental variable 

 

ܻ ൌ ߤ   ܼߩ

 

The coefficient ߚଶୱ୪ୱ we are concerned about is actually equivalent to the ratio of the covariance of the two 

segments 

 

ଶୱ୪ୱߚ ൌ
௬,௭ݒܥ
௫,௭ݒܥ

 

 

Different statistical methods should be used according to the type of outcome variable. Linear regression is 

used for continuous results, and logistic regression is used for binary results. 

One-sample MR (One Sample Mendelian Randomization) assumes that a genetic variant Z is associated 

with a specific phenotypic exposure X, then the genetic variant Z should also be associated with the outcome Y 

of the phenotypic feature, and is calculated using the 2SLS statistical analysis method to provide a basis for 

causal inference (Hernán and Robins, 2006; Palmer et al., 2024). One-sample MR is easy to operate, which 

does not require external data, and is limited to a single sample, that is, the exposure and the outcome come 

from the same sample. The selection range of the instrumental variable is relatively limited, and the causal 

relationship only comes from the same data set, which is easily affected by weak instrumental bias and 

horizontal pleiotropy (Wang, 2023). 

3.2 Inverse-Variance Weighted (IVW) 

Inverse-Variance Weighted (Zhang, 2024a) is a common method in MR analysis, which is used to integrate 

the effects of multiple instrumental variables (such as multiple SNPs) and requires that all instrumental 
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variables are valid. Based on the effect estimate and variance of each instrumental variable, the effect estimate 

weight is given, and the instrumental variable with a small variance has a large weight value. 

First, for each SNP, its effect estimate on the exposure and outcome is calculated. 

Then, each SNP is weighted by the variance of the effect estimate. 

Finally, the total causal effect estimate is calculated by weighted average (Burgess et al., 2013). 

 

IVWߚ ൌ
∑
୶୮୭ୱ୳୰ୣୣߚ ൈ ୭୳୲ୡ୭୫ୣߚ

Varሺߚ୭୳୲ୡ୭୫ୣሻ

∑
୶୮୭ୱ୳୰ୣଶୣߚ

Varሺߚ୭୳୲ୡ୭୫ୣሻ

 

 

The IVW method is used with either random-effects or fixed-effects models (Burgess et al., 2013). 

Fixed-effects models are used when there are three or fewer genetic variants and random-effects models are 

used when there are four or more genetic variants. Random-effects models allow for heterogeneity among the 

causal estimates targeted by the genetic variants and for overdispersion in weighted linear regression (standard 

linear regression or robust regression; Burgess et al., 2016), as well as residual standard errors ≥ 1. The null 

hypothesis is that all genetic variants estimate the same causal parameter (heterogeneity statistic (Cochran's Q 

statistic; Zhang, 2024a) and associated p-value). Rejection of the null suggests that one or more variants may 

be pleiotropic (del Greco et al., 2015; Yavorska and Staley, 2023). In fixed-effects models, residual standard 

errors = 1. Weights can be penalized to reduce the contribution of genetic variants to the analysis and the 

influence of outlying ratio estimates (Burgess et al., 2016). 

In weighted linear regression, weights can be simple. In this case, IVW estimation is equivalent to 

meta-analyzing the ratio estimate for each variant using inverse-variance weights based on the simplest 

expression for the variance of the ratio estimate (δ-expanded first-order terms - standard error of the 

association with the outcome divided by the association with the exposure). If δ-weights are used, the variance 

expression is the δ-expanded second-order terms (Burgess and Bowden, 2015). The second-order terms 

incorporate uncertainty in the genetic association with the exposure, and this uncertainty can be ignored using 

simple weighting (Burgess and Bowden, 2015). 

For strict two-sample Mendelian randomization analyses (i.e., no overlap), the correlation between the 

genetic association with the exposure and the association with the outcome for each variant generated by 

sample overlap is set to 0. The correlation should be set to the observed correlation between the exposure and 

the outcome. For δ-weights, this correlation is used only to calculate standard errors. 

Yavorska and Staley (2023) note that for multiple uncorrelated genetic variants, the estimate can be 

thought of as: (1) an inverse-variance weighted combination of the ratio estimates from the meta-analysis 

(Zhang, 2024a), (2) combining the genetic variants into a weighted score and then using that score as the ratio 

estimate for the instrumental variable (the same estimate is obtained with two-stage least squares using 

individual-level data), and (3) the coefficients of a weighted linear regression of the association with the 

outcome on the risk factor with the intercept fixed to zero and using inverse-variance weights. Causal 

estimates are obtained by regressing the association with the outcome on the association with the risk factor 

with the intercept set to zero and the weights being the inverse variance of the association with the outcome. 

For a single genetic variant, the estimate is the ratio of the coefficients  
ఉೊ
ఉ

 and the standard error is the 

first term of the δ method approximation  
ఉೊೞ
ఉ

 . 
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3.3 Penalized Inverse-Variance Weighted (pIVW) Method 

The penalized inverse variance weighted (pIVW) estimator simultaneously accounts for weak instruments and 

balanced-level pleiotropy in a two-sample MR with summary statistics, i.e., an exposure sample (with IV 

exposure effects and standard errors) and an outcome sample (with IV outcome effects and standard errors) 

(Xu et al., 2023). 

The pIVW estimator also allows for IV selection in a three-sample MR, where weak IVs are screened out 

using an additional sample (with IV exposure effects and standard errors) independent of the exposure and 

outcome samples. 

3.4 Median 

The weighted median or simple median method introduced by Bowden et al. (2016) is used to calculate the 

median of the ratio instrumental variable estimates estimated using each genetic variant individually (Yavorska 

and Staley, 2023). 

When the weights are simple (simple median), the estimates are obtained by calculating the ratio causal 

estimate for each genetic variant (Bowden et al., 2016) 

ߠ ൌ
ఉೊ
ఉ

  

and find the median estimate. 

Computing the weighted median of the instrumental variable effect estimates provides another evaluatio of 

the results, which is a robust method for estimating causal effects, even when up to 50% of the instrumental 

variables are invalid. In this method, the effect estimates for each SNP are first ranked, and then the weighted 

median is used as the estimate of the causal effect. 

When weighted (weighted median), the estimate is obtained as follows (Bowden et al., 2016; Yavorska and 

Staley, 2023): 

(1) Calculate the causal estimate ratio and rank the genetic variants according to the size of the estimate, i.e.,  

 

ଵߠ ൏ ଶߠ ൏ ڮ ൏   .ߠ

 

(2) Calculate the normalized inverse-variance weight for each genetic variant, ݓଵ ൏ ଶݓ ൏ ڮ ൏  ,ݓ

 

ݓ  ൌ
୰ୟୡሺఉೕ

మ ሻ௦ഁೋ
మ

∑ ୰ୟୡሺఉ
మ ሻ௦ഁೊ

మ


 

 

(3) Find k such that 

 

ݏ ൌ ∑ ݓ ൏ 0.5
ୀଵ ାଵݏ , ൌ ∑ ݓ  0.5ାଵ

ୀଵ  

 

(4) Calculate the weighted median estimate by extrapolation 

 

WMߠ ൌ ߠ  ሺߠାଵ െ ሻߠ כ fracሺ0.5 െ ାଵݏሻሺݏ െ  ሻݏ

 

   When all weights are equal, the simple median estimate is the same as the weighted median estimate. The 

standard errors for both the simple median and weighted median methods are calculated using bootstrapping. 

Compared to the inverse-variance weighted method and the Egger method, the median-based method is 

more robust to individual genetic variants with strong outlier causal estimates. Formally, the simple median 
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method gives consistent estimates of the causal effect when at least 50% of the genetic variants are valid 

instrumental variables (for the weighted median method, when 50% of the weights come from valid 

instrumental variables) (Yavorska and Staley, 2023). When weights are penalized, the weighted method is 

used, but the contribution of genetic variants with outlier (heterogeneous) ratio estimates to the analysis is 

reduced. 

3.5 Egger Method 

The Egger method uses a random effects model. The Egger method provides: (1) directional pleiotropy tests 

(Egger intercept tests), (2) causal effect tests, and (3) causal effect estimates (Yavorska and Staley, 2023). 

Causal estimates are obtained by regressing the association with the outcome on the association with the risk 

factor, with weights being the inverse variance of the association with the outcome. The intercept term in the 

regression analysis of ߚ୭୳୲ୡ୭୫ୣ on ୣߚ୶୮୭ୱ୳୰ୣ (without constant term) represents the average pleiotropy of 

genetic variants (average direct effect on the outcome) and is used to test whether there is horizontal pleiotropy, 

taking into account possible heterogeneity of instrumental variables, and providing a corrected estimate of 

causal effect. If the intercept term is not zero, then not all genetic variants are effective instrumental variables 

and the standard (inverse-variance weighted) estimate is biased, specifically, there is directional pleiotropy. If 

the InSIDE (instrumental variable strength independent of direct effect) assumption holds, then the Egger 

slope parameter provides a test of causal effect and provides a consistent estimate of causal effect even if the 

intercept is different from zero. The method is implemented in three steps: 

(1) Regression analysis (robust regression or standard linear regression) using effect estimates of all SNPs; 

(2) Corrected causal effect estimate is obtained through regression; 

(3) Correct and test for certain biases using the Egger regression intercept term (Bowden et al., 2015). 

If genetic variants are correlated, then this correlation can be explained. A correlation matrix must be 

provided: the elements of this matrix are the correlations between the individual variants (diagonal elements 

are 1). If correlations are specified, robust regression and penalization are not allowed (Burgess et al., 2016). 

The null hypothesis is that the Egger regression model describes the association with the outcome without 

excessive heterogeneity (using the heterogeneity statistic (Cochran's Q statistic) and the associated p-value). If 

the genetic variants are pleiotropic, the null hypothesis is expected to be rejected, but this does not mean that 

the Egger analysis or the InSIDE assumptions are invalid. I2 is used to measure heterogeneity between genetic 

associations and exposures (Bowden et al., 2016; Zhang, 2024a). Low I2 values are associated with both larger 

precision differences between Egger and IVW estimates and weaker instrumental variable bias (Bowden et al., 

2016; Yavorska and Staley, 2023). Low p-value for the Egger intercept test indicate directional pleiotropy or 

failure of the InSIDE assumption and suggest that the IVW estimates are biased. 

3.6 Lasso Method 

Lasso extends the IVW model to include an intercept term for each genetic variant. These intercept terms 

represent the association between the genetic variant and the outcome bypassing the risk factor. The causal 

effect is estimated by weighted linear regression, where the intercept term is subject to a Lasso penalty. The 

Lasso method applies a Lasso penalty to the direct effect of the genetic variant on the outcome. The Lasso 

penalty tends to shrink the intercept term corresponding to the effective instrument to zero. The causal estimate 

is described as the post-Lasso estimate and is obtained by performing the IVW method using only those 

genetic variants identified as effective by the Lasso procedure. The Lasso method is implemented in two steps: 

(1) Fit a regularized regression model and identify some genetic variants as effective instruments. 

(2) Estimate the causal effect using a standard multivariate IVW that includes only effective genetic variants. 

The post-Lasso method is performed whenever the number of genetic variants identified as effective 

instruments is greater than the number of risk factors. The default heterogeneity stopping rule will always 
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return more genetic variants as effective instruments than identified risk factors. 

If a significant proportion of genetic variants are removed from the analysis, the MR-Lasso method may 

give a false impression of confidence in the causal estimate due to the homogeneity of the causal estimate for a 

particular variant among the remaining variants. However, it is unreasonable to claim strong evidence for 

causality after removing a large number of variants with heterogeneous estimates from the analysis. 

The tuning parameter λ used by the Lasso procedure controls the degree of sparsity. If not specified, the 

tuning parameter is calculated by the heterogeneity stopping rule. For completeness, parameter estimates of the 

regularized regression model used to identify invalid variants can be also provided (Yavorska and Staley, 

2023). The intercept is estimated from the regularized regression model in the Lasso method. An intercept 

estimate of zero identifies the corresponding genetic variant as a valid instrument. Genetic variants with 

non-zero intercept estimates are excluded from the post-Lasso estimator (Yavorska and Staley, 2023). 

3.7 Maximum-likelihood Method 

Burgess et al (2013) introduced the maximum likelihood method. The likelihood function is defined by 

assuming that the summary data for each genetic variant are normally distributed. For the association of each 

genetic variant with exposure and outcome, a bivariate normal distribution was assumed. The mean association 

with an outcome is considered as the mean association with the exposure multiplied by the causal effect 

parameter. Therefore, if there are k genetic variants, k+1 parameters are estimated by: one for each gene - the 

exposure association, plus the causal parameter. If the number of genetic variants is large, then maximizing 

this function may be a problem. If the maximum-likelihood estimate differs significantly from the 

inverse-variance weighted estimate, this may indicate that convergence has not occurred in the optimization 

algorithm. The variance-covariance matrix of the bivariate normal distribution is obtained from the provided 

standard error estimate. The correlation between genetic associations and outcomes due to exposure and 

sample overlap can be specified and has a default value of zero. 

Two features that make this approach superior to the inverse-variance weighting approach are that 

uncertainty about the genetic association with the exposure is incorporated into the model and the correlation 

between the genetic association estimate for each variant and the exposure and outcome. The method works 

for both unrelated and related genetic variants. It can also be used for individual genetic variants. 

The original version of the maximum-likelihood method assumes that all genetic variants have the same 

causal estimate; if the fixed-effects model is incorrect and there is large heterogeneity in the causal estimates 

of different variables, the causal estimates may be too precise. The random-effects analysis implemented is an 

ad hoc solution to the heterogeneity problem, but should produce reasonable confidence intervals that 

incorporate this heterogeneity. 

   This method naturally estimates fixed-effects models, assuming that each genetic variant estimates the 

same causal effect. However, if there is heterogeneity in the causal estimates of different variables, the 

confidence intervals under the fixed-effects model will be too narrow. Random-effects models add additional 

uncertainty by multiplying the standard error by the square root of the likelihood ratio heterogeneity statistic 

divided by the number of genetic variants minus one (unless the number is less than 1, in which case no 

modification of the criterion is made). This is similar to the residual standard errors in regression models (the 

Cochran’s Q heterogeneity statistic is equal to the RSE squared times the number of genetic variants minus 

one). 

   If genetic variants are correlated, then this correlation can be explained. A correlation matrix must be 

provided, the elements of which are the correlations between variants (the diagonal elements are 1). 

   The null hypothesis is that all genetic variants estimate the same causal parameter; rejection of the null 

value indicates that one or more variants may be pleiotropic (using heterogeneity statistics (likelihood ratio 
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statistics) and associated p values). 

3.8 Constrained Maximum-likelihood (cML) Method 

The cML method uses constrained maximum likelihood to select null IVs with relevant and/or irrelevant 

tropism effects (Lin et al., 2023). Data perturbation can be used to explain selection uncertainty when many 

null IVs have weak pleiotropy. When performing DP (data perturbation), two goodness-of-fit (GOF) tests are 

developed to check whether the model-based and DP-based variance estimates converge to the same estimate. 

The small p-value of the GOF test indicates that the selection uncertainty is not negligible and that the results 

of DP are more reliable. 

   Since the constrained maximum likelihood function is non-convex, multiple random starting points can be 

used to find the global minimum. For some starting points, the algorithm may not converge. 

3.9 Hartwig Method 

Hartwig's mode-based approach obtains variant-specific ratio estimates from each genetic variant in turn and 

computes the mode estimate. This is done by constructing a kernel smoothed density from the ratio estimates 

and taking the maximum as the mode estimate. Standard errors are computed using a bootstrap procedure and 

confidence intervals are based on estimates with a normal distribution (Zhang, 2022a, b). If multiple (or 

weighted multiple) genetic variants are valid instruments, this approach should give consistent estimates as 

sample size increases. This means that the largest set of variants with the same causal estimate in the 

asymptotic limit are valid instruments. 

In this approach, standard error estimates can be either 

(1) simple - computed as a first-order term of a δ expansion - the standard error of the association with the 

outcome divided by the association with the exposure, or 

(2) δ - computed as a second-order term of a δ expansion (the default option). The second-order term 

incorporates uncertainty about the genetic association with the exposure, which can be ignored using simple 

weighting. 

The bandwidth of 1 in the kernel smoothed density approach represents the bandwidth value chosen by the 

modified Silverman bandwidth rule recommended by Hartwig et al. (2017). A bandwidth of 0.5 represents half 

this value. 

3.10 Multivariable MR 

If one want to evaluate the joint effects of multiple exposure factors on an outcome at the same time, one can 

use multivariable MR, such as multivariable inverse-variance weighting method, multivariable Egger method, 

multivariable MR-Lasso method, multivariable median method, etc. Multivariable MR is based on Mendel's 

law of inheritance. It randomly groups multiple variables at the same time to make the distribution of variables 

between groups random, so as to improve the credibility and accuracy of the results. In multivariable MR, a set 

of SNPs can be selected as instrumental variables for each exposure, and multivariate statistical analysis can be 

performed. This method allows the genetic association of multiple risk factors to be considered simultaneously 

in MR analysis, which helps to adjust known confounders or explore the mediating effects between different 

factors. For example, researchers may simultaneously consider multiple SNPs associated with exposure factors 

and their relationship with the occurrence of the disease. Multivariable MR requires that the number of SNPs 

exceeds the number of exposure factors. The null hypothesis is that all genetic variants estimate the same 

causal parameter; rejection of the null indicates that one or more variants may be pleiotropic (using the 

heterogeneity statistic (likelihood ratio statistic) and the associated p-value). 

(1) Multivariable IVW method 

Multivariable Mendelian randomization is an extension of Mendelian randomization to handle genetic variants 

associated with multiple risk factors. Two scenarios are envisioned for its use: 
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(i) Biologically relevant risk factors, such as lipid composition; 

(ii) Risk factors for which there is a network of causal effects (mediation) between one risk factor and another. 

In both cases, under the extended assumption of multivariable Mendelian randomization, the coefficients 

represent the direct causal effect of each risk factor in turn, while the other risk factors are fixed. 

The method is implemented using multivariable weighted linear regression. If the variants are correlated, 

the method is implemented using generalized weighted linear regression. Causal estimates are obtained by 

regressing the association with the outcome on the association with the risk factor, with the intercept set to 

zero and the weights being the inverse variance of the association with the outcome. 

(2) Multivariable Median method 

It performs multivariable Mendelian randomization via the median method, implemented via multivariable 

weighted quantile regression with the quantile set to 0.5. The regression model is multivariate and weighted by 

the inverse variance of the specific variant estimate. Confidence intervals are calculated via a parametric 

bootstrap procedure to estimate the standard error of the estimate, and then use quantiles from the normal 

distribution or t distribution (Yavorska and Staley, 2023; Zhang, 2022a, b).  

(3) Multivariable Egger method 

Multivariate Egger is an extension of the Egger method to handle genetic variants associated with multiple risk 

factors. The method is implemented using multivariate weighted linear regression. If the variants are correlated, 

the method is implemented using generalized weighted linear regression. Causal estimates are obtained by 

regressing the association with the outcome on the association with the risk factor, with an intercept estimate 

and weights that are the inverse variance of the association with the outcome (Yavorska and Staley, 2023). 

Both the univariate and multivariate versions of Egger are sensitive to the choice of parameterization of the 

genetic association - which allele the association is relative to (i.e., which allele is the effect allele). For 

univariate Egger, this problem can be solved by setting the genetic associations with the exposure to all 

positive. In multivariate Egger, we must choose which exposures to target the genetic associations to. 

(4) Multivariable Lasso method 

The multivariable Lasso method applies a Lasso penalty to the direct effect of a genetic variant on the outcome 

(Grant and Burgess, 2020). The causal estimate is described as a post-Lasso estimate and is obtained by 

performing the multivariable IVW method using only those genetic variants identified as significant by the 

Lasso procedure. 

The multivariable Lasso extends the multivariable IVW model to include an intercept term for each genetic 

variant. These intercept terms represent the association between the genetic variant and the outcome bypassing 

the risk factor. The regularized regression model is estimated by multivariable weighted linear regression, 

where the intercept term is subject to a Lasso penalty. The Lasso penalty tends to shrink the intercept term 

corresponding to significant instruments to zero (Yavorska and Staley, 2023). 

The main estimate given by this method is the post-Lasso estimate. If a significant proportion of the 

genetic variants are removed from the analysis, the multivariable Lasso method may give a false impression of 

the confidence in the causal estimate because of the homogeneity of the causal estimates for specific variants 

among the remaining variants. However, it is unreasonable to claim strong evidence for causality after 

removing a large number of variants with heterogeneous estimates from the analysis. 

The Lasso penalty relies on an adjustment parameter that controls the degree of sparsity. The default is to 

use a heterogeneity stopping rule, but a fixed value can be specified. 

As part of the analysis, the genetic variants are oriented so that all associations with one risk factor are 

positive (the first risk factor is used by default). Reorientation of genetic variants is performed automatically as 

part of this function. 
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(5) Multivariable Constrained Maximum-likelihood (MVcML) method 

The multivariable constrained maximum-likelihood (MVcML) method is robust to both correlated and 

uncorrelated pleiotropy (Lin, 2023). Multivariate cML (MVcML) is an extension of cML that handles multiple 

exposures of interest. As its univariate version, it is robust to both correlated and uncorrelated pleiotropy. 

In practice, the data perturbation (DP) version is preferred in practice because it can account for 

uncertainty in model selection for more robust inference (Yavorska and Staley, 2023).  

(6) Multivariable Generalized Method of Moments (GMM) method 

This is a robust inference of two-sample multivariate Mendelian randomization using the generalized method 

of moments. This method accounts for overdispersed heterogeneity in genetic variant-outcome associations 

(Hanson, 1982). 

3.11 Simple Mode 

If there is only one instrumental variable, the effect estimate of the instrumental variable is used directly to 

estimate the causal effect. First, a strongly correlated SNP is selected as the instrumental variable, and then the 

effect estimate of the SNP is used to estimate the causal effect of the exposure on the outcome 

ୱ୧୫୮୪ୣߚ ൌ
୭୳୲ୡ୭୫ୣߚ
୶୮୭ୱ୳୰ୣୣߚ

 

 

3.12 F Statistic 

The F statistic is a statistical indicator used to evaluate the strength of an instrumental variable. If the F 

statistic of an instrumental variable (such as a SNP) is low, it may indicate that the instrumental variable is 

weak, which may lead to weak instrument bias. The conditional F statistic is an approximation of the 

first-stage conditional F statistic based on all variants of the aggregated data. This represents the strength of the 

instrument for each exposure conditional on other exposures in the model. This is only reported when the 

sample size of the genetic association associated with the exposure is provided (Yavorska and Staley, 2023). 

3.13 Two-Sample MR 

Two-Sample MR is used to estimate causal relationships when the data on exposure and outcome come from 

different populations (when a single sample containing both exposure and outcome data is lacking). Two 

different data sets from similar backgrounds can be used, one for analyzing the association between Z and X 

(exposure factors) and the other for analyzing the association between Z and Y (disease outcomes), and better 

causal estimates and sensitivity analyses can be guaranteed through sample size advantages and optimized 

statistical analysis methods. For example, one population provides exposure data and the other provides 

disease occurrence data, and the two-sample MR method is used to exploit the causal relationship between 

exposure and disease occurrence. 

In a two-sample MR, if there is an instrumental variable associated with X, the association between this 

instrumental variable and Y can only be observed if X has a causal effect on Y. This means that 

 

௭,௬ߚ ൌ ௭,௫ߚ ൈ  ௫,௬ߚ

 

That is, instead of estimating β by regressing X on Y, we can simply use 

 

௫,௬ߚ ൌ  ௭,௫ߚ/௭,௬ߚ

 

to calculate the effect size of X on Y. This means that in contrast to the two-stage least squares method, the 

summary statistics of two independent GWAS can be used to calculate this ratio. 
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Two-sample MR can provide a richer selection of data sources and can evaluate the generality of causal 

relationships in different groups. Two-sample MR is also the most common type of MR designs in the current 

big data context, but it should be noted that since two-sample MR requires the use of external two-stage MR, 

thus selection bias may be introduced, such as the winner's curse caused by using GWAS results as 

instrumental variables, which may lead to the overestimation of the association between the instrumental 

variable and X and the underestimation of the causal association.  

Two Stage Mendelian randomization (TSMR) is a variant of two-sample MR (Spiller et al., 2019). It can 

be used to evaluate whether the mediator mediates the effect of exposure X on outcome Y, not just the 

association between a single factor and a certain outcome. It is suitable for finding complex relationships 

between multiple factors and inferring the mechanism of exposure X to outcome Y through unpacking methods. 

Two-stage MR supports the simultaneous evaluation of multiple causal relationships and can discover complex 

causal networks, but the effectiveness of instrumental variables affected by the intensity and frequency of 

genetic variations requires more data and statistical analysis, and the interpretation of the results is more 

challenging (Wang, 2023). 

3.14 Multi-Sample MR 

Multi-Sample MR uses multiple samples from different populations to enhance the statistical power and 

generalization ability of the analysis. The method is to integrate genetic and phenotypic data from different 

populations for comprehensive analysis. Multi-sample MR can be used when the exposure or outcome 

involved in the study may be heterogeneous in different populations. For example, analyze how genetic 

susceptibility affects the risk of hypertension in different ethnic populations. 

3.15 Bidirectional MR 

Bidirectional MR studies whether there is a bidirectional causal relationship between two variables. It consists 

of two two-sample MR analyses and is a variant of two-sample MR. In essence, it is to evaluate whether there 

is a reverse causal relationship between exposure and outcome, that is, whether the outcome can cause the 

exposure. When it is suspected that two variables may affect each other, the associated SNPs can be used to 

evaluate the causal effect of the two variables as exposure and outcome. For example, study the relationship 

between depression and sleep disorders, evaluate whether depression causes sleep disorders, and whether sleep 

disorders increase the risk of depression. 

Bidirectional MR can avoid the confusion caused by reverse causality and have a more comprehensive 

understanding of causality. However, the instrumental variable assumption in both directions needs to be met 

at the same time. 

3.16 Mediation MR 

When it is necessary to clarify how a certain lifestyle habit affects the development of a disease through 

physiological mechanisms, mediation MR can be used to explore how exposure (such as smoking) affects the 

outcome (such as the risk of respiratory infection) through one or more mediating variables (such as lung 

function). Mediation MR solves the confounding problem in causal inference through the natural random 

assignment of genetic variants to determine whether there is a mediating mechanism that can explain the effect 

of exposure on the outcome. In mediation MR, the effect of the main exposure on the mediating variable is 

first evaluated, and then how the mediating variable affects the outcome and whether the main exposure has 

other direct ways to affect the outcome. For example, researchers evaluate the effect of smoking on lung 

function and how lung function impairment increases the risk of respiratory infection, and then evaluate 

whether smoking has other direct ways to affect the risk of respiratory infection. 
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3.17 Nonlinear MR 

Non-linear MR is a method used to evaluate the nonlinear causal relationship between exposure and outcome, 

especially whether the effect of exposure on the outcome is different at different exposure levels. 

3.18 Time-Series MR  

Time-Series MR studies how exposure factors that change over time affect outcomes. First, data on exposure 

and outcomes of individuals at different time points are collected, and then time series analysis techniques are 

used to evaluate the dynamic causal relationship between exposure and outcome. In long-term cohort studies, 

time series MR can be used to understand how a certain exposure affects health outcomes over time. For 

example, the dynamic process of how long-term alcohol intake affects liver health can be evaluated. 

 

4 Common Used Graphs in Mendelian randomization 

4.1 Scatter Plot 

Scatter plots can reveal the association pattern of a single SNP with exposure and outcome. In the MR scatter 

plot, each point represents a specific genetic variant (SNP). The horizontal axis usually represents the strength 

of association of each SNP with the exposure factor, while the vertical axis represents the strength of 

association of each SNP with the research outcome. The distribution of these points can intuitively show the 

association of genetic tools with exposure and outcome. The key to this graph is to find the slope, which 

represents the strength of the causal relationship between exposure and outcome. If all the points are roughly 

arranged along a straight line, this may indicate the existence of a consistent causal relationship. 

4.2 Forest Plot  

Forest plots (Zhang 2024a; Zhang and Liu, 2024) can show the effect size and confidence interval of each SNP, 

which helps to understand the contribution of each SNP to the overall causal effect estimate. The standard 

forest plot shows the effect size and 95% confidence interval of each SNP on the exposure factor. The 

horizontal axis is usually the effect size (Zhang, 2022c), such as the risk ratio or regression coefficient, and the 

vertical axis lists all SNPs. Each point represents the effect estimate of a SNP, and the horizontal line 

represents the 95% confidence interval. If the confidence interval (Zhang, 2022a) contains the zero point 

(usually the vertical line with an effect size of 1), it means that the effect of the SNP is not significant. 

Leave-One-Out Forest Plot: remove one SNP each time and recalculate the MR estimate to evaluate its impact 

on the overall result. If the effect estimate changes significantly after removing a certain SNP, it may indicate 

that the SNP has too large individual effect on the outcome. 

4.3 Funnel Plot  

Funnel plots were used to examine the heterogeneity of estimated values and judge the reliability of MR 

estimates. In the ideal case without heterogeneity, the graph should be symmetrical, meaning that all genetic 

instrument variants (SNPs) are symmetrically distributed around the true causal effect estimate. The horizontal 

axis usually represents the effect estimate (such as the impact of each SNP on the outcome), and the vertical 

axis represents the precision (such as the standard error or inverse variance of the effect estimate). The 

symmetry of the funnel plot suggests that the results are unlikely to be affected by some unobserved 

confounder. If the funnel plot appears asymmetrical, it may indicate the presence of heterogeneity, indicating 

that some SNPs may affect the outcome through other pathways besides exposure factors, or may be the result 

of measurement error and chance. 

 

5 Cases of Mendelian Randomization 

Case 1 

Suppose a researcher wants to study the effect of alcohol consumption (an exposure factor) on myocardial 
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infarction (a disease outcome). 

① Find SNPs: Use GWAS data to find several SNPs that are significantly related to smoking behavior as 

instrumental variables. 

② Exclude the influence of LD: Check the LD relationship between these SNPs, and use SNP-Clumping 

technology to select some representative SNPs to reduce the bias caused by LD. 

③ Sensitivity analysis: During the analysis process, sensitivity analysis, such as Leave-One-Out analysis, is 

performed to ensure that a single SNP will not have an excessive impact on the overall estimate. 

④ Pleiotropic effects: At the same time, considering the pleiotropic problem, the analysis pays special 

attention to those SNPs that may affect myocardial infarction through different biological pathways to ensure 

that the core assumptions of MR analysis are met. This method can more reliably evaluate the impact of 

drinking on the risk of myocardial infarction. 

Case 2 

In order to estimate whether weight gain leads to an increased risk of diabetes, the 2SLS method can be used 

first to estimate its impact on the risk of diabetes through the predicted exposure (based on the BMI value of 

the SNP). Then, the IVW method can be used to combine the results of multiple SNPs to obtain an overall 

causal effect estimate. 

① Inverse-Variance Weighted (IVW). It is used for evaluating the causal relationship between independent 

variables and the risk of disease. The existence of the intercept term is not considered in regression, and the 

inverse variance is used as the weight for fitting. In the IVW hypothesis, these SNPs (as instrumental variables) 

are considered to have no pleiotropic effects. At the same time, considering that the results of GWAS are 

mostly obtained after phenotype standardization, it is considered that there is a positive proportional 

relationship between outcome and exposure. In general, the IVW method is used to determine whether it is a 

positive result. 

② For example, in IVW analysis, the effect of each SNP on stomatitis and the effect of each SNP on 

COVID-19 (i.e., how each SNP affects COVID-19) are calculated. Then, the effect of each SNP on COVID-19 

is divided by the effect of the SNP on stomatitis to obtain the causal ratio of each SNP. These causal ratios are 

integrated using the IVW to obtain the overall causal effect of stomatitis on COVID-19. A larger value of the 

overall causal effect means that stomatitis has a greater causal effect on COVID-19, and p must be less than 

0.05 to be significant. 

 

6 Disadvantages of MR Studies 

Some disadvantages of MR studies are as follows: 

(1) Limited applicability: MR studies are only applicable to exposure factors with suitable genetic instrumental 

variables, which limits their scope of application. 

(2) Statistical power issues: The effect of a single genetic variant on most exposure factors may be very small, 

which leads to insufficient statistical power of MR analysis and increases the risk of false and negative results. 

(3) Low variation interpretation: Known genetic variants can usually only explain a small part of the variation 

in complex phenotypes (such as BMI), and a very large sample size is required to detect weak to moderate 

effects. 

(4) Sample size requirements: Especially in MR studies of complex phenotypes, since the variation explained 

by known genetic variants is usually low, a large sample size is required to achieve sufficient statistical power 

(Zhang, 2022b, 2024c). 

(5) Influence of environmental factors: For those risk factors that are greatly affected by environmental factors, 

MR studies may not be sufficient to accurately estimate the contribution of genetic factors to the variation in 
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exposure factors. 

In general, MR studies provide a powerful method to evaluate the potential causal relationship between 

exposure factors and diseases, especially when randomized controlled trials are not feasible or economical. 

However, it also has a series of limitations, especially when high genetic variation interpretation and large 

sample size are required. Researchers need to consider these limitations when designing MR studies and use as 

many methods as possible to improve the statistical power and accuracy of the studies (Zhang, 2024a-c). 
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