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Abstract 

A bit-arc capacity scaling algorithm to solve the maximal flow problem subjected to box constraints on the 

flow vector in directed network has been presented. The algorithm is mainly based on successive divisions of 

capacities by multiples of two. It solves the maximal flow problem as a sequence of O(n2) Dijkstra's shortest 

path between two nodes in the defined residual network with n nodes and m  arcs. It is proven that, the 

algorithm's complexity was estimated to be no more than O(n2mr) arithmetic operations in the worst case to 

reach the maximum vector flow through the directed network. Where r denotes to the smallest integer greater 

than or equal to log B, and B denotes to the largest arc capacity of the network. A numerical example has been 

illustrated using the proposed algorithm.   

  

Keywords maximum flow problem; scaling algorithm; polynomial time algorithm; augmenting path method; 

network flow; digraph. 

 

 

 

 

 

 

 

 

1 Introduction 

The maximal flow problem is the problem of determining the maximum amount of flow that can be sent from 

a source node to a sink node through a capacitated network without exceeding the capacity of any arc, in which 

conservation of flow holds at every node except the source and sink nodes.  

    The maximum flow problem is widely studied in both applications and theory (Zhang, 2017, 2018). Its 

applications can be found in diverse fields such as: Telecommunication Wireless Networks (Azar et al., 2011; 

Caillouet et al., 2010; Hu et al., 2010; Thulasiraman and Shen, 2010; Rushdi and Alsalami, 2020); Image 

Segmentation(Freedman and Zhang, 2005; Song et al., 2010; Zeng et al., 2008); Extraction of Web 

Communities (Asano et al., 2006; Horiike et al., 2009; Imafuji and Kitsuregawa, 2004); Transportation 

(Anderson et al., 2007; Brede and Boschetti, 2009; Çalıskan, 2011; Rebennack et al., 2010); Ecosystem 

(Rushdi and Alsalami, 2021); Coding Network and Wireless ad hoc Networks (Ahlswede et al., 2000).   
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    The fundamental algorithmic techniques for solving the maximum flow problem are presented in Armstrong 

et al (1998), Noda et al (2000), pham et al (2006), Ahuja et al (1993), Ahuja and Orlin (1989), Goldfarb and 

Hao (1990, 1991), Orlin et al (1993), Gabow (1985), Cheriyan and Mehlhorn (1999) and Cherkassky and 

Goldberg (1997). 

    Generally, there are two main basic groups of algorithms to solve the maximal flow problem in directed 

networks: The first group of algorithms is the augmenting path methods which were introduced by Ford and 

Fulkerson (1962), and Edmonds and Karp (1972). The algorithm of Ford and Fulkerson is known as the 

augmenting path algorithm. An augmenting path is a directed path from the source to the sink in the residual 

network. The algorithm proceeds by identifying augmenting paths and sending flows on these paths until the 

network does not contain such a path. Complexity of the algorithm is ( )O nmB , where n and m denotes the 

numbers of nodes and arcs in the network, respectively, and B is the largest arc capacity in the network.  

    The algorithm of Edmonds and Karp is known as the shortest augmenting path algorithm. This algorithm 

sends flow along the shortest path from the source to the sink in the residual network. The length of paths is 

the number of arcs that belongs to it. The complexity of this algorithm is 2( )O nm . 

    Recently Tlas (2022, 2023) has presented efficient algorithms to solve the maximum flow problem in 

polynomial time. These algorithms are mainly based, first on the binary representation of arcs capacities and 

second, on the use of both the Breadth-first search technique and Dijkstra's variant to find the shortest path 

going from the source node to the sink node in the residual networks. 

    The second group of algorithms is the preflow-push methods which were introduced by Golberg and Tarjan 

(1988) who takes the original idea of preflow from Karzanov (1974). The idea of the preflow-push algorithms 

is to select an active node and to push flow to its neighbors. To estimate the active nodes that are closer to the 

sink, the method keeps the distance label for each node. Thus, it sends flow only on admissible arcs. If the 

selected active node has no admissible arcs, its distance label is increased. This operation is called relabel. The 

algorithm terminates when the network does not contain active nodes. The complexity of the algorithm is

2( )O n m . 

In this paper, a bit-arc capacity scaling algorithm is presented to find the maximum flow in a directed 

network with an upper bound 2( )O n m r on the number of arithmetic operations, where n , m  are the 

numbers of nodes and arcs of the network respectively and r is the smallest integer greater than or equal to 

log B . The algorithm is basically based on successive divisions of capacities by multiples of two; it solves 

the maximum flow problem as a sequence of 2( )O n shortest path problems on residual networks between 

two any nodes using Dijkstra's variant.  

    A generalization of this proposed algorithm has been also performed, in this paper, in order to solve the 

maximum flow problem in directed networks with nonnegative lower bound (box constraints) on the flow 

vector. 

 

2 Preliminarily 

In this section, we define the maximum flow problem and introduce the terminology and notation used 

throughout the paper.  
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2.1 Maximum flow problem statement 

We consider a directed graph (digraph)  ,G V E  consists of a set V of nodes and a set E  of arcs. A 

directed network is a directed graph with numerical values attached to its arcs. Let n V  and m E . 

We associate with each arc  ,k i j E  a nonnegative integral capacity kb . Frequently, two special nodes 

are distinguished in a graph, the source s and the sink t . An arc  ,k i j E  has two end points i  and

j , the node i  is called the tail and node j  is called the head of arc k . The arc  ,k i j is said to 

emanate from node i , the arc  ,k i j is an outgoing arc of node i  and an incoming arc of node j . The 

arc adjacency list of node i , ( )E i , is defined as the set of arcs emanating from node i , i.e., 

 ( ) ( , ) :E i k i j E j V    . The degree of a node is the number of incoming and outgoing arcs at that 

node. 

We introduced into network an additional arc (artificial arc) ( , )t s has a capacity t sb   . 

The total flow x from source node s  to sink node t is tsx .  

The problem is to find a maximum flow x among the source node s  and the sink node t  with value tsx . 

A flow is a value x  on arcs satisfies the following constraints: 

( , )ij ijx b i j E   (Capacity constraint), 

( , )ij jix x i j E    (Flow anti-symmetry constraint) and 

 0 \ ,ij
j V

x i V s t


   (Flow conservation constraint). 

 

2.2 Labeling function 

A labeling function (potential function) u is defined as a function from nodes to the real numbers, i.e.,

:u V  R , where R denotes real numbers. x and u  are called compatible if the flow x and labeling 

function u  together satisfy the following conditions: (for each arc ( , )i j E ) 

If ( ) 0,ij ij j ic c u u     then 0ijx  , 

If ( ) 0ij ij j ic c u u    , then ij ijx b , 

If ( ) 0ij ij j ic c u u    , then 0 ij ijx b  ,  

Where 1 ( , )ijc i j E   is called the cost of the arc ( , )i j and ( )ij ij j ic c u u    is called the reduced 
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cost of the arc ( , )i j . 

2.3 Residual network 

A residual network ( )G x  corresponding to a feasible flow x is defined as follows: (for each arc

( , )i j E ) 

If ij ijx b , then there is a forward arc (direct arc) ( , )i j  has reduced cost ( ) 0ij ij j ic c u u    , 

If ij ijx b , then the arc ( , )i j is ignored, 

If 0ijx  , then there is a backward arc (reverse arc) ( , )j i  has reduced cost ( ) 0ji ij j ic c u u     , 

If 0ijx   then the arc ( , )j i is ignored. 

With taken into consideration that 1 ( , )ijc i j E   . 

2.4 Artificial arc 

We introduce on network an additional arc ( , )t s which has cost 0t sc  , capacity t sb    and reduced 

cost ( ) 0ts ts s t t sc c u u u u      . 

 

3 Maximum Flow Algorithm With Zero Lower Bound On The Flow Vector 

This algorithm solves the maximum flow problem in polynomial time with zero lower bounds and b upper 

bounds on the flow vector x  i.e. 0 k kx b   for all arcs 1,...,k m on the network  ,G V E , and 

also it is considered that kb   for all 1,...,k m .  

Initialization: 

       Set   : min / 2 max , 1,...,q
kr q b k m   =Z  

       Set : 0kx   and :k kB b for all arcs 1,...,k m  

       Set : 0iu   for all nodes 1,...,i n / 1, /s t n   

       Set : 0t sx   /total flow/  

       Set : 1kc   for all arcs 1,...,k m and : 0tsc   

Iteration: 

While (1) ( 1)r   then do 

                       Set  : 1r r    
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                       Set : 2k kx x  for all arcs 1,...,k m  

                       Set : 2t s t sx x  

                       Set :
2

k
k r

B
b     

  for all arcs 1,...,k m  / x    is the greatest integer less                 

                       than or equal to x /  

                      Set : 1k   

          While (2) ( )k m , then do /scan arcs ( , )k i j / 

              If (1) k kx b , then do 

                      If (2) ( ) 0k k j ic c u u     then do 

                            Do procedure ( , )D j i from j to i  on the new residual network ( )G x  

                          If (3)t P , then do 

                                        Set : 1k kx x   

                                        Set : 1v vx x   for all forward arcs v on the path      

                                                  of minimal reduced costs from j  to i in ( )G x  

                                         Set : 1gf gfx x   for all backward arcs ( , )v f g on the    

                                                         path    

                           End If (3) 

                          If (4) ( ) 0k k j ic c u u    /with new u / 

                                Set :e e iju u c  for all nodes 1,...,e n  and e j  

                          End If (4) 

                     End If (2) 

                    Do procedure ( , )D s t from s to t  on the new residual network ( )G x  

                          If (5)t p , then do 

                                        Set : 1t s t sx x   

                                        Set : 1l lx x   for all forward arcs l on the path   of         

                                                    minimal reduced costs from s  to t in ( )G x  

                                         Set : 1gf gfx x   for all backward arcs ( , )l f g on the  
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                                                                 path    

                           End If (5) 

                       End If (1) 

              Set : 1k k   

          End While (2) 

End While (1) 

Set :i i su u u   for all 1,...,i n  

End the algorithm 

3.1 Procedure * *( , )D j i (variant of Dijkstra's algorithm) 

This procedure gives the shortest path of reduced costs between *j  and *i on the defined residual network 

( )G x  based on Dijkstra’s algorithm 

Initialization: 

       Set :p  ,  

       Set  : 1,2,...,I n ,  

       Set 0g  ,  

       Set 
*

*

0
j

if j j
d

if j j

  
 

        for all 1,...,j n  

Iteration:  

While ( )I  do 

         Let  : inf \ih d i I   

         If h    or * :
i

d g then do 

              Set :id g  for all i I  

               Set :I   

        Else do 

                Set :g h  

                 Find i I such that id g  

                 Set  : \I I i  and  :p p i    

                 For all j I such that ( , )i j  is an arc in the residual network, do 
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                        If ( )j ijd g c   do      / 0ijc   reduced cost/ 

                             Set :j ijd g c   

                             Set ( ) :pred j i  

                       End If 

               End For all 

         End If 

End While   

Set :i i iu u d   for all 1,...,i n  

End the procedure  

 

Notes 

a. After the application of the procedure * *( , )D j i on the defined residual network, new potential 

function u will be re-determined. 

b. After the application of the procedure * *( , )D j i on the defined residual network, it is found that the 

set p  because *j p at least.  

c. After the application of the procedure * *( , )D j i  on the defined residual network, if *i p , then 

there is a path between *j  and *i  on the defined residual network else there is not any path between  

*j  and *i  on the defined residual network. 

The following procedure determines the shortest path of the reduced costs defined by nodes on the defined 

residual network from *j to *i  in the case when there is a path between them i.e. *i p . 

3.2 Identification of the shortest path from *j  to *i  on the defined residual network   

Initialization:  

            Set *:i i  

            Set  : i   

Iteration: 

While *( )i j  do 

           Set : ( )j pred i  

           Set :i j  
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           Set  : i    

End While  

 

Comments 

a. It is noticed that, when the algorithm is executed, the compatibility conditions between the current 

flow x and the current potential function u  must be satisfied. In the contrary case, it is necessarily to 

change the current potential function as follows: (for arc ( , )i j E ) 

 If 0ijc   and ij ijx b , then we will change the node potentials to be: :e e iju u c   

for all 1,...,e n and e j  

 If 0ijc   and 0ijx  , then we will change the node potentials to be: :e e iju u c   

for all 1,...,e n and e i  

b. The new reduced cost ( )ijc new is equal to the old reduced cost ( )ijc old minus the deference 

between jd and id because: (for arc ( , )i j E ) 

           

( ) ( )

( ( ) ( ) )

( ( ) ( )) ( )

ij ij j i

ij j j i i

ij j i j i

c new c u u

c u old d u old d

c u old u old d d

  

    

    

 

           ( ) ( ) ( )ij ij j ic new c old d d    

c. The reduced cost jic of the arc ( , )j i  is equal to the inverse reduced cost ijc  of the arc ( , )i j and 

verse versa because: (for arc ( , )i j E ) 

                 

( )

( )

( ( ))

( ( ))

ji ji i j

ij i j

ij i j

ij j i

ij

c c u u

c u u

c u u

c u u

c

  

   

   

   

 

 

3.3 Complexity of the algorithm with zero lower bound on the flow vector 

The time taken by the procedure * *( , )D j i , which is based on Dijkstra’s algorithm is 2( )O n arithmetic 

operations, where n  is the number of nodes in the network ( , )G V E .The maximum number of iterations 

of the algorithm is m r ,where m is the number of arcs in the network ( , )G V E and r is the smallest 
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integer greater than or equal to log B , where B is the largest arc capacity of the network. For any iteration, 

the procedure * *( , )D j i is applied two times and then the time taken by the algorithm will be no more than 

2( )O n mr arithmetic operations to reach the maximum vector flow through the directed network.    

 

4 Maximum Flow Algorithm With Non-Negative Lower Bound On The Flow Vector 

This algorithm solves the maximum flow problem in polynomial time with 0a   nonnegative lower bound 

and b upper bound (box constraints) on the flow vector x  i.e. 0 k k ka x b    for all arcs 1,...,k m on 

the network  ,G V E , and also it is considered that kb   for all 1,...,k m .  

It is supposed that there is a nonnegative lower bound 0a   on the flow x  in the network  ,G V E i.e. 

0 k k ka x b   this implies that, 

0 k k k kx a b a     , For the whole arcs 1,...,k m . 

Let k k ky x a   and *
k k kb b a   for all arcs 1,...,k m , which implies that k k kx y a  , 

*
k k kb b a  and *0 k ky b   for all arcs 1,...,k m . 

Using the conservation constraint, it can be seen that 

1 1

n n

ij js
i s

x x
 

   , for all nodes 1,...,j n                                                                                       (1) 

From another hand, we have 

 
1 1 1

n n n

ij ij ij
i i i

x y a
  

     , For the whole nodes 1,...,j n                                                            (2) 

1 1 1

n n n

js js js
s s s

x y a
  

     , for all nodes 1,...,j n                                                                        (3) 

Using (1), (2) and (3), it can be found that 

1 1

n n

ij js j
i s

y y w
 

    , for all nodes 1,...,j n  

Where 
1 1

n n

j js ij
s i

w a a
 

    for all nodes 1,...,j n  

An arc of capacity jw  and zero cost is added in the node j where, 1,...,j n  we define also a new source 

(super source) called *s and a new sink (super sink) called *t . 
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In the case of 0jw  , then an outgoing arc in the node j  of the form *( , )j t  is added where, its capacity is 

*

*
jjt

b w and its cost is * 0
jt

c   , in the case of 0jw  , then an incoming arc in the node j  of the form 

*( , )s j is added where, its capacity is *

*
js j

b w  and its cost is * 0
s j

c  , in the case of 0jw  , then there 

is not any arc added in the node j . These added arcs are at most n arcs called auxiliary arcs. A special arc of 

the form * *( , )t s is also added where, its capacity is * *

*

t s
b    and its cost is * * 0

t s
c  . 

This new defined digraph will be denoted by * * *( , )G V E , where it is consisting of the same set of nodes V

added to it the super source *s  and the super sink *t with * * 2V n n   , the same set of arcs E added to 

it all auxiliary arcs with * *E m , where *m m m n   and the two special arcs ( , )t s and * *( , )t s . 

Let w is the sum of capacities of auxiliary arcs which have strictly positive capacities i.e. 
{ : 0}j

j
j V w

w w
 

  . 

Initialization: 

              Set   * * *: min / 2 max , 1,...,q
kr q b k m   =Z  

               Set : 0iu   for all nodes *1,...,i n * * * * */ 1, , 1, , 2 /s t n s n t n n n        

               Set : 0ky   and * *:k kB b for all arcs *1,...,k m  

               Set : 0t sy   /total flow/ 

               Set * * : 0
t s

y   

               Set   
{ : 0}j

j
j V w

w w
 

   

               Set : 1kc   for all arcs 1,...,k m   

Iteration: 

While (1) *( 1)r  then do 

                       Set * *: 1r r   

                       Set : 2k ky y  for all arcs *1,...,k m  

                       Set : 2t s t sy y and * * * *: 2
t s t s

y y  

                      Set *

*
* :

2
k

k r

B
b

 
  
 

 for all arcs *1,...,k m  
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                      Set : 1k   

          While (2) *( )k m , then do /scan arcs ( , )k i j / 

                       If (1) *
k ky b , then do 

                           If (2) ( ) 0k k j ic c u u     then do / ( , )k i j  , 0t sc  , * * 0
t s

c  / 

                                   Do procedure ( , )D j i from j to i on the residual network *( )G y           

                                  If (3)   i p , then do 

                                        Set : 1k ky y   

                                        Set : 1l ly y   for all forward arcs l on the shortest path      

                                                           of reduced costs from j  to i in *( )G y  

                                         Set : 1gf gfy y   for all backward arcs ( , )l f g on the  

                                                           shortest path    

                                  End If (3) 

                                  If (4) ( ) 0k k j ic c u u     / with new node potentials iu and ju / 

                                       Set :e e iju u c  for all nodes *1,...,e n and e i  

                                  End If (4) 

                          End If (2) 

                         Do procedure * *( , )D s t from *s to *t  on the new residual network      

                         *( )G y                                                                            

                           If (5) *t p , then do 

                                 Set * * * *: 1
t s t s

y y   

                                 Set : 1l ly y   for all forward arcs l on the shortest path       

                                                            of reduced costs from *s  to *t in *( )G y  

                                Set : 1gf gfy y   for all backward arcs ( , )l f g on the shortest  

                                                            path   of reduced costs 

                          End If(5) 

                          Do procedure ( , )D s t from s to t  on the new residual network *( )G y  
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                           If (6)t p , then do 

                                       Set : 1t s t sy y   

                                        Set : 1l ly y   for all forward arcs l on the shortest path       

                                                            of reduced costs from s  to t in *( )G y  

                                       Set : 1gf gfy y   for all backward arcs ( , )l f g on the  

                                                            shortest path    

                           End If (6) 

                       End If (1) 

              Set : 1k k   

          End While (2) 

End While (1) 

Set :i i su u u   for all 1,...,i n  

If (7) * *( )
t s

y w , then, the network ( , )G V E has no feasible flow 

Else    Set k k kx y a  for all arcs 1,...,k m  

           Set *
k k kb b a   for all arcs 1,...,k m  

End If(7) 

The total flow from source s to sink t on the network ( , )G V E is  ts tsx y  

End the algorithm 

 

Notes 

a. The quantity 
{ : 0}j

j
j V w

w w
 

  is the maximum flow in the network * * *( , )G V E , and then we 

always have * *( )
t s

y w  where, * *t s
y  is the flow in * * *( , )G V E .           

b. In the case when all auxiliary arcs in * * *( , )G V E are saturated, i.e. * *t s
y w , then the flow y is 

optimal in * * *( , )G V E  and consequently the flow x y a   is optimal in ( , )G V E .     

c. In the case when there are some auxiliary arcs in * * *( , )G V E are not saturated, i.e. * *t s
y w , then 

the flow y is optimal in * * *( , )G V E and consequently there is not any feasible flow x  in

( , )G V E . 
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Complexity of the algorithm with nonnegative lower bound on the flow vector 

The time taken by the procedure * *( , )D j i , which is based on Dijkstra’s algorithm is * 2(( ) )O n arithmetic 

operations, where *n  is the number of nodes in the network * * *( , )G V E .The maximum number of 

iterations of the algorithm is * *m r ,where *m is the number of arcs in the network * * *( , )G V E and *r

is the smallest integer greater than or equal to log B , where B is the largest arc capacity of the network 

* * *( , )G V E . For any iteration, the procedure * *( , )D j i is applied three times and then the time taken by 

the algorithm will be at most * 2 * *(( ) )O n m r arithmetic operations to reach the maximum vector flow through 

the directed network.  

 

5 Maximum Flow Algorithm With Infinite Upper Bound On The Flow Vector  

Two cases have been treated earlier in this paper, the first one is when a zero lower bound and a finite upper 

bound are on the flow vector x  i.e. 0 k kx b     for all 1,...,k m and the second case is when a 

nonnegative lower bound and a finite upper bound are on the flow x  i.e. 0 k k ka x b      for all

1,...,k m .  

Now, two additional cases will be treated: the first one is when a zero lower bound and an infinite upper bound 

are on the flow x  i.e. 0 k kx b     for all 1,...,k m ; the second case is when a nonnegative lower 

bound and an infinite upper bound are on the flow x  i.e. 0 k k ka x b      for all 1,...,k m . 

In the case of 0 k kx b     for all 1,...,k m , we will do the following procedure: 

Procedure 

This procedure forms an auxiliary network derived from the original network ( , )G V E and also tests if the 

original maximum flow problem has a feasible solution or not. 

Initialization /auxiliary network/ 

(For each arc ( , )i j E ), then do 

If ijb    then, there is a forward arc ( , )i j has a reduced cost 1ijc   

If ijb    then the arc ( , )i j is ignored 

Iteration 

       Do procedure ( , )D s t  from s  to t on this auxiliary network. 

If there is a path goes from s to t , i.e. t p , then the maximum flow is infinite and the maximum flow 
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problem does not have any finite feasible solution, else the maximum flow is upper bounded by the value of 

 ( , ): & \
ij

i j i p j V p

b
 

  . In this case the infinity   in the original network ( , )G V E will be changed by the 

value of   and resolve it using the proposed algorithm. 

Now, in the case of 0 k k ka x b      for all 1,...,k m , we will change it to the case of 

*0 k ky b     for all 1,...,k m , where k k ky x a  and *
k k kb b a   for all 1,...,k m , and we 

repeat the same procedure used before in the first case. 

 

6 Conclusion 

In this paper, using the successive divisions of capacities by multiples of two, a bit-scaling algorithm to solve 

the maximal flow problem has been presented. The algorithm runs in no more than 2( )O n m r arithmetic 

operations to reach the maximum vector flow through the directed network. Where n and m denote the 

numbers of nodes and arcs of the network ( , )G V E respectively and r is the smallest integer greater than or 

equal to log B , where B is the largest arc capacity of the network. The algorithm solves the maximal flow 

problem as a sequence of 2( )O n shortest path sub-problems on residual networks. 

    A generalization of this algorithm has been also performed in order to solve the maximal flow problem in 

directed networks subjected to box constraints on the flow vector. 

 

7 Illustrative Example   

The demonstration of the proposed algorithm for solving the maximum flow problem will be done through the 

following numerical example.  

1 (s)
4 (t)

3

2

b=7

a=0

b=4

a=0

b=11

a=0

b=3

a=0

b=5

a=0

b=   

Fig. 1 Diagram of example with zero lower bound on the flow vector (network ( , )G V E ). 
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1 (s)
4 (t)

3

2

b=7

x=5

b=4

x=4

b=11
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Fig. 2 Diagram of solution with zero lower bound on the flow vector (network ( , )G V E ). 
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Fig. 3 Diagram of example with nonnegative lower bound on the flow vector (network ( , )G V E ). 
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Fig. 4 Diagram of example with added auxiliary arcs (network 
* * *( , )G V E ). 
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Fig. 5 Diagram of solution with added auxiliary arcs (network 
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Fig. 6 Diagram of solution with nonnegative lower bound on the flow vector (network ( , )G V E ). 
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