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Abstract

This article explores the application of machine learning techniques in acoustic ecology to classify the
formations of the Brazilian Cerrado (Forest, Savanna, and Grassland) based on their soundscapes. Considering
the importance of the Cerrado in biodiversity and hydrology, along with the challenges faced by the biome due
to agricultural expansion, the study seeks more efficient and cost-effective methods for identifying its
phytophysiognomies. Five statistical models were developed and evaluated, utilizing both traditional Machine
Learning and Deep Learning, with Mel Frequency Cepstral Coefficients (MFCCs) and spectrogram images as
input variables. The performance comparison of these models revealed the superiority of the Convolutional
Neural Network (CNN), which, although requiring higher computational costs and training time, provided
high accuracy in classifications and valuable insights through the application of the LIME explainability
technique. Additionally, the study proposes a multiple classification methodology by majority voting for
frequently observed events, enabling reliable classifications through models with moderate performance. The
conclusion is that it is possible to classify different Cerrado formations through their acoustic landscape, and
the choice of the optimal model for classification should consider a balance between accuracy, operational
complexity, and efficiency. The findings of this study offer relevant guidance for future research and the
application of monitoring technologies in conservation and biome recovery efforts.
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1 Introduction

The soundscape of the Cerrado, one of Brazil's richest and most threatened biomes, has been the subject of
intense research due to its biodiversity and ecological importance. This biome, which occupies about 23% of
the national territory and extends across 12 states (BDIA-IBGE), is characterized by a semi-arid climate and
dense shrub vegetation. However, the expansion of agricultural and livestock activities has led to a significant
loss of its vegetation cover, with about 150,000 square kilometers of vegetation being deforested between 2000
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and 2018 (IBGE, 2020, Annex 2). The degradation of the Cerrado not only threatens its flora and fauna,
including endemic species, but also affects its critical role in the country's water and climate regulation (Dias,
1991).

Given this scenario, the restoration of degraded areas and the preservation of the existing biome become
imperative. To this end, it is essential to understand the region's natural formation, identify biodiversity loss,
and determine the ideal formation for restoration, which may or may not correspond to the original biome,
depending on the degree of degradation (Cava, 2018).

Traditionally, the process of identifying the phytophysiognomies of the Cerrado is based on qualitative
analyses of flora and fauna, which requires substantial field efforts (Ribeiro Apud Embrapa, 2008).

Fig. 1 Phytophysiognomies of the Cerrado.

However, recent advances in Acoustic Ecology offer a promising alternative, using the soundscape to
efficiently and economically identify and classify environmental characteristics (Tucker, 2014).

This article presents an innovative approach that integrates Artificial Intelligence in the analysis of the
Cerrado soundscape, exploring the potential of machine learning models to discern its different natural
formations. By using acoustic data from regions representative of the Forest, Savanna, and Grassland
formations, this study aims to validate the hypothesis that similar ecological identities are reflected in similar
soundscapes. The efficiency in identifying and classifying these formations through their sound profiles is
practical proof of the validity of this hypothesis.

The contribution of this work is threefold: first, it highlights the application of sound classification based
on Artificial Intelligence; second, it considers the relationship between the complexity of the method and its
practicality; and third, it emphasizes the use of LIME in spectrogram-based CNNSs, a significant advancement
that allows identifying the spectral regions and frequency bands that characterize each formation. These
advances not only enhance the accuracy of analyses but also provide valuable elements for the conservation
and restoration of the Cerrado.

2 Literature Review

The analysis of soundscapes is an approach that has gained prominence in biodiversity assessment and
ecosystem understanding. The soundscape consists of a complex array of sounds, known as biophony,
geophony, and anthropophony, which reflect the interaction between living beings, natural phenomena, and
human activities (Priestman, 2017). Biophony, in particular, is a vital indicator of the presence and behavior of
species in an ecosystem, making it a valuable tool for biodiversity studies.
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In the context of the Cerrado, a biome of extreme ecological importance with unique biodiversity, the use
of soundscapes for environmental assessment is particularly pertinent. The Cerrado is a biodiversity hotspot,
home to a wide variety of endemic species and crucial for maintaining important watersheds (Dias, 1991).
Acoustic analysis of the environment can provide detailed information on the ecological health of these areas,
enabling the detection of changes in species composition and ecosystem dynamics.

Recent studies have applied Machine Learning and Deep Learning methods to classify species and monitor
biodiversity through sound recordings. For example, Nahian Ibn Hasan's (2022) study presents a hybrid of
traditional signal processing and deep learning approaches to identify bird species from audio recordings,
achieving an accuracy of 90.45% for a set of 10 bird classes. These advances demonstrate the potential of
combining soundscape analysis techniques and Artificial Intelligence in the conservation and monitoring of
biomes like the Cerrado.

The application of Machine Learning models, such as Gradient Boosting, has shown promising results in
soundscape studies. Fonseca et al. (2017) demonstrated the effectiveness of this model, improving baseline
performance by 8.2% when classifying acoustic scenes. Similarly, the use of Random Forest in audio signal
classification systems achieved an overall correct classification rate of 99.25% in a study by Grama et al.
(2017), highlighting the model's ability to handle imbalanced datasets and identify sounds related to wildlife
intrusion detection.

Logistic Regression has also been successfully applied in the analysis of urban soundscapes, as shown by
Noviyanti et al. (2019), who used Mel Frequency Cepstral Coefficients (MFCCs) (Davis et. al., 1980) to
predict sound perception with Correct Classification rates of up to 88.3%.

Additionally, the Multilayer Perceptron (Rosenblatt, 1958; Zhang, 2010), a neural network model, was
effective in the multinomial classification of acoustic patterns in audio clips, as explored by Zhang et al.
(2016), providing detailed information on the distribution of various acoustic patterns in long-duration
recordings, thus serving as another powerful tool for acoustic data analysis.

Delving further into the realm of neural networks, Convolutional Neural Networks (CNNs) have stood out
in soundscape analysis, particularly in spectrogram classification (Stowell et al., 2014; Pellegrini et al., 2020).
Khamparia et al. (2019) explored environmental sound classification using CNNs and achieved an accuracy of
77% on the ESC-10 dataset. This study underscores the efficiency of CNNs in recognizing and classifying
spectrogram images, which are visual representations of sound frequencies over time.

Acoustic Ecology, which originated with the pioneering works of Schafer (1977) and Truax (2001), has
evolved with the development of Data Science and Artificial Intelligence. The integration of these disciplines
has enabled deeper and more automated analysis of soundscapes, enhancing the understanding of ecological
interactions and the impacts of human activities on the environment. The World Forum for Acoustic Ecology
(WFAE), established in 1993, has been a platform for the dissemination and international recognition of this
research area (Wrightson, 2000).

The application of these techniques in the Cerrado can be an effective strategy for biome preservation.
Identifying specific soundscapes associated with different Cerrado vegetation formations is a crucial step for
implementing conservation and restoration measures. Acoustic analysis can assist in identifying degraded
areas and evaluating the effectiveness of management practices, contributing to the sustainability and
resilience of this ecosystem.

In summary, the literature review indicates that soundscape analysis, supported by advances in Artificial
Intelligence, is a promising approach for biodiversity assessment and ecosystem conservation. In the Cerrado,
this approach can not only help understand the biome's complexity but also guide preservation and restoration
efforts in the face of increasing anthropogenic pressures.
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3 Methodology
To investigate the central hypothesis that similar phytophysiognomic formations exhibit similar soundscapes,
this study proposes to analyze the following guiding questions:

e Model Efficiency: Which machine learning models, ranging from traditional statistical methods to
advanced neural networks, are most efficient and effective in classifying the types of natural
formations in the Cerrado based on their soundscapes?

e Complexity and Computational Cost: How do the complexity and computational cost of the models
impact the choice of the most appropriate method for classifying soundscapes?

e Relevant Sound Signal Attributes: Which attributes of the sound signals are most relevant for the
classification of the Cerrado soundscapes?

To address these questions, the study analyzed the effectiveness of models using Mel Frequency Cepstral
Coefficients (MFCCs) and spectrograms as input variables for the classification of soundscapes. Machine
Learning and Deep Learning models such as Gradient Boosting, Random Forest, Logistic Regression,
Multilayer Perceptron, and Convolutional Neural Networks were employed.

Additionally, the study examined the impact and importance of considering method simplicity, training and
prediction response time, and the ability to handle a large number of observations in a short period. Finally, it
sought to understand the importance of the main features of the spectrogram in classifying the Cerrado
soundscapes.

The outlined objectives aim not only to validate the central hypothesis but also to contribute to the
methodological advancement in the application of Artificial Intelligence for soundscape analysis in ecological
contexts. By understanding the acoustic characteristics associated with each vegetation formation, this study
significantly contributes to the preservation and restoration of the Cerrado biome and to the science of acoustic
ecology as a whole.

Adopting a methodical and structured strategy, the study followed four crucial steps that reflect the data
science cycle as proposed by Shearer (2000).

3.1 Data Collection

Field acoustic data collection was a crucial step in this study and was carried out with the help of acoustic
recording equipment developed for this purpose by the Laboratory of Acoustics and Environment (LACMAM)
at the Polytechnic School of the University of Sdo Paulo (USP). For a comprehensive analysis of the Cerrado
soundscapes, three Ecological Stations (EEs) were selected, each representing one of the main vegetation
formations of the biome: forest, grassland, and savanna.

The chosen regions were the EE of Assis, representing the forest formation, EE of Itirapina, as an example
of the grassland formation, and EE of Aguas de Santa Bérbara, illustrating the savanna formation. These
classifications were not arbitrarily assigned; they result from meticulous field studies conducted by specialists
who examined the characteristics and densities of the vegetation at each site. This initial classification was
essential to establish a reference point for subsequent acoustic analysis.

The following figure presents visual representations of the three analyzed Ecological Stations: Assis, Santa
Barbara, and lItirapina. The images were sourced respectively from the Catalog of Plants of the Conservation
Units of Brazil® (Assis), the Institute of Environmental Research? (Santa Bérbara), and the Scielo Brazil

!Available at: https://catalogo-ucs-brasil.jbrj.gov.br/descr_areas.php?area=EEAssis
?Available at; https://www.infraestruturameioambiente.sp.gov.br/institutoflorestal/areas-protegidas/estacoes-ecologicas/santa-
barbara/
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platform? (Itirapina).

Fig. 2 Vegetation ormations of the Cerrado: Forest, Savanna, and Grassland.

The simultaneous sound recording campaigns allowed for the capture of a broad spectrum of acoustic
events and variations, including sounds emitted by fauna, noises generated by abiotic elements such as wind
and rain, and any anthropogenic interferences. This holistic approach ensures that the captured sound profile is
representative of the complexity and richness of the Cerrado biome.

The volume of collected data was substantial, totaling approximately 3 TB of sound recordings from
September to November 2019. The audio data from the EE of Itirapina were recorded in 5-minute files with a
sampling rate of 8 KHz and 16-bit depth. In contrast, the soundscapes of the EE of Santa Barbara and Assis
were recorded in 3-minute files with a sampling rate of 32 KHz and 16-bit depth. Given the magnitude of the
collected data, it became necessary to adopt a strategy to make the data volume more manageable while
maintaining the integrity and representativeness of the information.

To this end, a random selection of 2,500 files from each of the three Ecological Stations was performed,
totaling 7,500 files and amounting to 70 GB of data, constituting what will be called the Temporal Database
(TDB). The randomization of the files ensured that the regions and recordings, being independent, did not bias
the sample, especially considering that the data were collected over a similar recording period for the three
regions. This strategic reduction of the database ensured a diverse representation of biotic conditions, climatic
conditions, and recording times, encompassing different scenarios such as winds, rains, and diurnal and
nocturnal variations. This approach allowed the machine learning models to be trained efficiently without
compromising their ability to learn and recognize the patterns of the Cerrado soundscapes in various contexts.

®Available at: https://doi.org/10.1590/51676-06032008000300019
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3.2 Pre-processing

After collecting the sound data, the subsequent stage of the study involved meticulous pre-processing of the
captured audio. From this phase onwards, all analyses were conducted using the R programming software (R
CORE TEAM, 2024).

This pre-processing phase consists of three steps, aiming to obtain a uniform database format that will be
used in the following modeling and feature extraction phase.

The first step is standardizing the duration of the recordings and the frequency band of the Temporal
Database (TDB). This was achieved by restricting the analysis to the first minute of each sample. This
standardization was essential to ensure the comparability between recordings, regardless of their original
duration.

Next, the sampling rates were resampled using the downsample function from the tune library in R. The
downsample function reduces the sampling rate of an audio file by partitioning the number of samples of the
original file into n equal parts, where

Initial Number of Samples
Initial Sampling Rate

n = Final Sampling Rate *

This process was necessary to synchronize the datasets, which were recorded with different sampling rates
among the EEs. Resampling the data from Santa Barbara and Assis to 8 KHz ensured that all data were in a
consistent format, facilitating subsequent analyses. At the end of this step, the TDB consisted of 7,500 ".wav"
files, each with a sampling rate of 8 KHz. These files represent one minute of random soundscapes collected in
the EEs of Assis, Santa Barbara, and Itirapina between September and November 2019.

The second step was the transformation of each temporal sample from the TDB to the frequency domain
using the Short-Time Fourier Transform (STFT). The transformation was performed using the spectro function
from the seewave package in R (Sueur et al., 2008). The seewave library, in turn, is based on the book "Animal
Acoustic Communication: Sound Analysis and Research Methods" (Hopp et al., 1998).

The parameters set in the "spectro™ function regulate the window size and the degree of overlap between
them. In this analysis, the function's default values were used: the window size (parameter ‘wl) was fixed at
512 points, while the overlap (parameter ‘ovlp’) was set to 0, indicating no overlap between windows.

With these parameters, each 512-point window of the audio signal corresponds to a 256-point vector in the
STFT operation. Thus, the resulting matrix contains 256 rows.

Given a window size of 512 points and a sampling rate of 8kHz, each window represents 512 / 8000 =
0.064 seconds of audio. To cover 59 seconds of audio, approximately 59 / 0.064 ~ 921 windows are required.

The multiplication of the number of rows (frequencies) by the number of columns (windows) results in the
total number of cells in the matrix, which corresponds to the total number of points in the STFT representation
of the audio signal. In this case, there are 256x921 = 235,776 points.

Thus, the use of STFT on the TDB resulted in the creation of a Time-Frequency Database (TFDB), a three-
dimensional database that captures the temporal evolution of frequencies and their respective amplitudes,
providing a detailed representation of the acoustic content of the recordings. Each audio file is transformed
into a database consisting of 235,776 rows, encapsulating detailed spectral information and including relevant
metadata such as the recording location and date.

Finally, the amplitudes in the TFDB were normalized to standardize the volume of the recordings and
reduce distortions or variations in sound intensity caused by different recording equipment. Normalization
adjusts the amplitudes to a common scale, facilitating comparison between recordings. The amplitudes at
instances j of each database i are normalized using the formula:

amplitude —me )
= ' ©
Z_u‘ standard deviati J
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ensuring that Z has a mean of 0 and a variance of 1.

All the pre-processing steps convert the original recordings into a matrix fundamental for future
developments and the construction of classification models. At the end of this process, the audios are
transformed into an Acoustic Feature Database (AFDB), which contains detailed information on time,
frequency, normalized amplitude, and location for each formation of the three major natural formations of the
Cerrado. The AFDB, with dimensions of 7,500 records x 4 columns (location, time, frequency, and normalized
amplitude) x 235,776, is the final database, which will be used to extract features such as Mel Frequency
Cepstral Coefficients (MFCCs) and create spectrograms, which will be the input variables for the supervised
models constructed.

MFCC

With the AFDB in hand, the melfcc function from the “tune” package was used to calculate the Mel-frequency
Cepstral Coefficients (MFCCs). This function is inspired by the melfcc.m function developed in the rastamat
library of Matlab (Hermansky, 1990; Hermansky et al., 1994).

MFCCs are obtained by emulating human auditory perception (Davis et al., 1980). The process begins with
a pre-emphasis filter to amplify the high frequencies, followed by the Short-Time Fourier Transform (STFT)
with a Hamming window to obtain the short-term spectrum. This spectrum is then mapped onto a Mel scale,
approximating human perception of frequencies. Next, the logarithm of this spectrum is applied, and the
Discrete Cosine Transform (DCT) is used to obtain the cepstral coefficients. Finally, the first 12 cepstral
coefficients are extracted and represent the MFCCs. After obtaining these coefficients, normalization was
performed to eliminate possible device noise and ensure the robustness of the method.

Spectrograms

Spectrograms are graphical representations that illustrate how the frequencies of a signal vary over time,
offering an intuitive and informative view of the studied sound environment. These images were used as input
variables in the Convolutional Neural Network models.

The first step in the spectrogram construction process involved reading the AFDB. Then, with the help of
the ggplot2 library in R (Wickham, 2016), the data were transformed into visual spectra.

Fig. 3 shows examples of these spectrograms, illustrating the sound diversity of the Cerrado formations.

Frequéncia (Hz)

Frequéncia (Hz)

Fig. 3 Example of spectrograms from the three regions/formations with standardized amplitudes.
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3.3 Modeling

The modeling phase was a crucial step in this study, where the information contained in the AFDB was
processed through a range of advanced machine learning techniques. The selection of models was based on a
literature review and previous technological advances, encompassing traditional statistical methods to deep
neural networks. Among the traditional models, Gradient Boosting, Random Forest, Logistic Regression, and
Multilayer Perceptron were selected, using Mel Frequency Cepstral Coefficients (MFCCs) (Davis et al., 1980)
as input variables. On the other hand, for the Convolutional Neural Network (CNN), spectrogram images were
used as the basis for classification.

Except for the MLP, the models were implemented with the tidymodels library (Kuhn et al., 2020; Kuhn et
al., 2022) in R, which provides an integrated and consistent approach to statistical modeling and machine
learning, following the principles of the tidyverse (Wickham et al., 2019).

Among the packages offered by tidymodels are "tune” (Kuhn, 2024) and "parsnip™ (Kuhn, Vaughan, 2024).
The "tune™ package plays a fundamental role in optimizing the hyperparameters of machine learning models.
Hyperparameters are model settings that need to be specified before training and are not learned from the data.
They can influence the model's effectiveness, and their optimization allows for the evaluation and comparison
of different models, improving their performance.

On the other hand, the "parsnip” package is used for model specification. It provides a consistent interface
for defining and configuring machine learning models, regardless of the underlying computational engine
implementing them. This package was extensively used in this study to define and adjust the hyperparameters
of the Gradient Boosting, Random Forest, and Logistic Regression models.

For the Gradient Boosting model, using the boost_tree function from the parsnip package, the following
hyperparameters were adjusted: mtry, min_n, tree_depth, sample_size, learn_rate, and loss_reduction. Here,
mtry refers to the number of variables available for splitting at each tree node, min_n is the minimum number
of observations in the nodes, tree_depth is the maximum depth of any tree, sample_size is the fraction of the
data used to build each tree, learn_rate is the learning rate, and loss_reduction refers to the minimum loss
reduction required to make a new split in the tree.

The Random Forest model, implemented through the rand_forest function from the parsnip package, had
the hyperparameters mtry and min_n adjusted. Mtry, as in the previous model, is the number of variables
available for splitting at each tree node, while min_n is the minimum number of observations in the nodes.

In Logistic Regression, using the multinom_reg function from the parsnip package, the hyperparameters
penalty and mixture were adjusted. The penalty refers to the amount of regularization applied, which helps
avoid overfitting, while mixture determines the type of regularization applied (L1, L2, or a mix of both).

The implementation of the CNN and MLP was carried out using the TensorFlow (GOOGLE, 2023) and
Keras (Chollet et al., 2023) libraries, which are open-source tools for machine learning and deep neural
networks. These libraries offer a flexible and powerful environment for building, training, and validating
complex models, such as CNNs, which are particularly suitable for processing visual and acoustic data.

The MLP architecture featured six intermediate layers, including two dense layers with 30 and 18 neurons,
respectively, along with a dropout layer and a normalization layer, placed between the dense layers. The total
number of adjustable parameters in the MLP model was 1,101.

The CNN architecture comprised several layers, including convolutional layers, batch normalization layers,
max pooling layers, and spatial dropout layers. The network starts with an input layer with dimensions
250x250x3, representing the dimensions of the input images.

Specifically, the model has three convolutional blocks, each with two convolutional layers, followed by a
batch normalization layer, a max pooling layer, and a spatial dropout layer. The number of filters in the
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convolutional layers progressively increases with each block, starting with 32, then 64, and finally 128. All
convolutional layers use ReLU activation functions and have a kernel size of 5x5, with 'same’ padding to
ensure the output has the same dimension as the input.

After the three convolutional blocks, the network has a global average pooling layer, followed by a flatten
layer and a dense layer with 128 units and ReLU activation function. A dropout layer with a rate of 0.4 is
applied before the output layer, which has three units and a softmax activation function, corresponding to the
three classification categories.

The model has a total of 815,139 adjustable parameters, of which 814,243 are trainable and 896 are not
trainable. During training, the model was compiled using the Adam optimizer with a learning rate of 0.001,
categorical_crossentropy loss function, and accuracy as the evaluation metric. Two callback functions were
used: one to reduce the learning rate when the validation loss stopped improving and another to stop training
when the validation accuracy exceeded 98% after 10 consecutive epochs above 97%.

The model was trained for up to 300 epochs with a batch size of 64. Validation data were used to monitor
the model's performance and adjust the learning rate as needed. The use of callbacks allowed for more efficient
training, avoiding overfitting and saving computational time.

The modeling methodology also included a strategic data split, separating the total dataset into three
distinct parts: training, validation, and blind testing. The training set was used to adjust the models and teach
them the data patterns. The validation set played a role in optimizing hyperparameters and preventing
overfitting, ensuring model generalization. The blind test set, composed of data not exposed to the models
during training, was crucial for testing the models' effectiveness in new and unknown conditions, providing a
reliable performance evaluation.

Each model underwent a careful training and validation process, aiming to maximize its accuracy and
generalization capacity. Metrics such as accuracy, precision, and recall were used to evaluate each algorithm's
performance, providing a comprehensive view of the models' effectiveness. Additionally, explainability
techniques, such as LIME, were planned to be applied to the CNN to interpret the model's decisions and
identify the most relevant acoustic features for classifying the Cerrado soundscapes.

In summary, the modeling was conducted with methodological rigor, enabling not only efficient
classification of soundscapes but also a detailed analysis of the models, contributing to the advancement of
knowledge at the intersection of Acoustic Ecology and Data Science.

3.4 Explainability

Understanding the decisions made by machine learning models, especially in complex neural networks such as
CNN:s, is essential for validating the reliability and applicability of the results obtained. In this context, the
explainability analysis focused on the predictions generated by the CNN, employing the LIME (Local
Interpretable Model-agnostic Explanations) technique as proposed by Ribeiro et al. (2016). LIME is a
methodology that facilitates the interpretation of complex models by introducing perturbations in the input
data and observing the variations in the model's predictions. This technique induces the CNN to formulate
local linear models that are inherently more understandable, revealing the impact of different areas of the
spectrogram image on the classification of soundscapes.

The "lime" library (Hvitfeldt et al., 2022) in R was used to perform the analyses. This library provides an
efficient implementation of the LIME technique, allowing seamless integration with other R packages used for
data analysis and visualization. The choice of this library is due to its flexibility and ability to provide precise
local explanations, aligned with the needs of the explainability analysis applied in this study.

The methodology implemented by LIME involves generating modified versions of the input data
(spectrograms) and subsequently analyzing the changes in the CNN's predictions. This analysis allows
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identifying which features of the images are crucial for the model's decisions. By applying LIME to specific
spectrograms, it is possible to identify which frequency segments or temporal patterns are considered most
relevant by the CNN in classifying a soundscape as belonging to a specific formation in the Cerrado.

The adopted explainability approach not only demonstrated the relevance of the acoustic attributes but also
promoted greater transparency in the model's predictive decisions.

In summary, the methodology employed in this study allowed the development of effective statistical
models and provided a detailed understanding of the predictive decisions. The use of LIME, in particular,
ensured a consistent and reliable approach, enabling the validation of the CNN's predictions and a deeper
interpretation of the characteristic acoustic patterns of the various formations in the Cerrado. The clarity in the
models’ decisions is a crucial aspect for advancing the application of Artificial Intelligence in ecological and
environmental research.

4 Results

The application of machine learning models for the classification of Cerrado soundscapes revealed significant
results. The performance of each model was evaluated based on metrics of accuracy, precision, and recall, as
presented in Table 1.

Table 1 Performance of the developed models according to the analyzed metrics.

Model Accuracy Precision Recall Training Time
Gradient Boosting 93% 93% 93% 5,86 minutes
Random Forest 92% 92% 92% 5,31 minutes
Logistic Regression 82% 83% 82% 9,89 seconds
Multilayer Perceptron 83% 79% 69% 2,33 minutes
CNN 98% 97% 97% ~ 8 days

The Convolutional Neural Network (CNN) demonstrated superiority, achieving 98% accuracy, 97%
precision, and 97% recall. This remarkable performance indicates that the CNN was able to accurately identify
the different formations of the Cerrado from the soundscapes. However, the substantially longer training time
(~8 days) compared to the other models must be considered in the context of practical application.

On the other hand, the strategy of "repetitive classification" proved to be effective when using moderately
performing models for frequently occurring events. This strategy involves repeatedly applying the same model
to several small samples of the same sound event. The final decision is made based on the most frequent
response among the classifications, using the majority voting method.

This approach is effective due to the consistency and convergence observed in the accurate identification
of the Cerrado's natural formation in various observations. This reflects the principles of the Law of Large
Numbers (Bernoulli, 1713), inferring that less complex models, with an acceptable accuracy rate, tend to
achieve an overall accuracy rate of 100% as the number of observations of the same sound event increases
infinitely.

Nonetheless, although the CNN requires significant investment in terms of time and computational
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resources, it brings an additional advantage: the ability to explain its decisions. With the help of LIME
(Ribeiro et al., 2016), a model interpretation technique, it was possible to identify which sound features are
most important for classifying the different formations of the Cerrado. This is clearly demonstrated in Figure 4,
where LIME helps to clarify which aspects of the audio recordings are most relevant to the CNN, providing

not only accurate classification but also a deeper understanding of the acoustic data we are analyzing.
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Fig. 4 Application of LIME to explain the CNN in examples of spectrograms.

5 Discussion

The advances achieved in this study underline the synergy between Acoustic Ecology and Data Science in the
effective classification of soundscapes, providing valuable analytical tools to advance the understanding and
preservation of the Cerrado. The explored models exhibited performance variability, but the applicability and
efficiency of their implementation proved to be equally important factors for their selection in environmental
analysis projects.

The remarkable performance of the CNN in quantitative results reflects its aptitude for extracting and
learning complex features from soundscapes. However, it should be noted that the high accuracy of this model
can be offset by the simplicity and agility of less sophisticated methods, such as Gradient Boosting or Random
Forest, which are advantageous in various practical scenarios, especially when frequent assessments are
necessary.

The methodological approach for classifying high-exposure events had a crucial influence, suggesting that
reasonably performing models, when applied iteratively, can provide accurate classification and converge
towards the true identification of the natural formation. This technique relies on the consistency of results
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generated by dynamically analyzing multiple samples, establishing a reliable precedent for environmental
categorizations.

The use of LIME in the CNN analysis provided additional insights, allowing not only the identification of
Cerrado formations with high accuracy but also the understanding of the specific acoustic properties that
determine each classification. This elucidation highlights the importance of combining different techniques
and models to extract the maximum value from the analyzed data.

In conclusion, the research emphasized the relevance of balancing various factors in the choice of models
for acoustic landscape classification. The multiparametric perspective of this article highlights the
effectiveness of interdisciplinarity in applying artificial intelligence for monitoring and conserving natural
ecosystems.

6 Conclusions

The investigation conducted in this study provided robust evidence supporting the central hypothesis that
similar natural formations have similar soundscapes. Through the application of machine learning and deep
learning models, it was possible to accurately classify the formations of the Cerrado based on their acoustic
landscapes, validating the hypothesis and demonstrating the potential of these technologies in ecological
analysis.

Addressing the first guiding question, it was found that both traditional statistical methods and advanced
neural networks are efficient in classifying soundscapes. However, the Convolutional Neural Network (CNN)
stood out as the most effective model, although it requires significant training time and computational
resources.

Regarding the second question, the complexity and computational cost of the models influenced the choice
of the most appropriate method. While the CNN offered the best performance, models such as Gradient
Boosting and Random Forest proved to be viable and efficient alternatives, especially when considering the
repetitive classification strategy and the majority voting principle for high-exposure events.

In relation to the third question, the sound signal attributes that were most relevant for the classification of
Cerrado soundscapes were the specific frequencies identified by the models, especially the CNN, whose
interpretation was enhanced by the use of LIME.

This study concludes that the integration of Artificial Intelligence in soundscape analysis is a promising
approach for biodiversity assessment and ecosystem conservation. The developed and tested models offer
valuable tools for identifying natural formations, contributing to the preservation and recovery of threatened
biomes such as the Cerrado. The choice of the appropriate model should be guided by a balance between
accuracy, efficiency, and practicality, considering the specific needs of each application. The explainability of
the models, particularly the CNN, reinforces confidence in the classification decisions and provides valuable
insights for future research and practical applications.
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