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and 2018 (IBGE, 2020, Annex 2). The degradation of the Cerrado not only threatens its flora and fauna, 

including endemic species, but also affects its critical role in the country's water and climate regulation (Dias, 

1991). 

Given this scenario, the restoration of degraded areas and the preservation of the existing biome become 

imperative. To this end, it is essential to understand the region's natural formation, identify biodiversity loss, 

and determine the ideal formation for restoration, which may or may not correspond to the original biome, 

depending on the degree of degradation (Cava, 2018). 

Traditionally, the process of identifying the phytophysiognomies of the Cerrado is based on qualitative 

analyses of flora and fauna, which requires substantial field efforts (Ribeiro Apud Embrapa, 2008). 

Fig. 1  Phytophysiognomies of the Cerrado. 

 

 

However, recent advances in Acoustic Ecology offer a promising alternative, using the soundscape to 

efficiently and economically identify and classify environmental characteristics (Tucker, 2014). 

This article presents an innovative approach that integrates Artificial Intelligence in the analysis of the 

Cerrado soundscape, exploring the potential of machine learning models to discern its different natural 

formations. By using acoustic data from regions representative of the Forest, Savanna, and Grassland 

formations, this study aims to validate the hypothesis that similar ecological identities are reflected in similar 

soundscapes. The efficiency in identifying and classifying these formations through their sound profiles is 

practical proof of the validity of this hypothesis. 

The contribution of this work is threefold: first, it highlights the application of sound classification based 

on Artificial Intelligence; second, it considers the relationship between the complexity of the method and its 

practicality; and third, it emphasizes the use of LIME in spectrogram-based CNNs, a significant advancement 

that allows identifying the spectral regions and frequency bands that characterize each formation. These 

advances not only enhance the accuracy of analyses but also provide valuable elements for the conservation 

and restoration of the Cerrado. 

 

2 Literature Review 

The analysis of soundscapes is an approach that has gained prominence in biodiversity assessment and 

ecosystem understanding. The soundscape consists of a complex array of sounds, known as biophony, 

geophony, and anthropophony, which reflect the interaction between living beings, natural phenomena, and 

human activities (Priestman, 2017). Biophony, in particular, is a vital indicator of the presence and behavior of 

species in an ecosystem, making it a valuable tool for biodiversity studies. 
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In the context of the Cerrado, a biome of extreme ecological importance with unique biodiversity, the use 

of soundscapes for environmental assessment is particularly pertinent. The Cerrado is a biodiversity hotspot, 

home to a wide variety of endemic species and crucial for maintaining important watersheds (Dias, 1991). 

Acoustic analysis of the environment can provide detailed information on the ecological health of these areas, 

enabling the detection of changes in species composition and ecosystem dynamics. 

Recent studies have applied Machine Learning and Deep Learning methods to classify species and monitor 

biodiversity through sound recordings. For example, Nahian Ibn Hasan's (2022) study presents a hybrid of 

traditional signal processing and deep learning approaches to identify bird species from audio recordings, 

achieving an accuracy of 90.45% for a set of 10 bird classes. These advances demonstrate the potential of 

combining soundscape analysis techniques and Artificial Intelligence in the conservation and monitoring of 

biomes like the Cerrado. 

The application of Machine Learning models, such as Gradient Boosting, has shown promising results in 

soundscape studies. Fonseca et al. (2017) demonstrated the effectiveness of this model, improving baseline 

performance by 8.2% when classifying acoustic scenes. Similarly, the use of Random Forest in audio signal 

classification systems achieved an overall correct classification rate of 99.25% in a study by Grama et al. 

(2017), highlighting the model's ability to handle imbalanced datasets and identify sounds related to wildlife 

intrusion detection. 

Logistic Regression has also been successfully applied in the analysis of urban soundscapes, as shown by 

Noviyanti et al. (2019), who used Mel Frequency Cepstral Coefficients (MFCCs) (Davis et. al., 1980) to 

predict sound perception with Correct Classification rates of up to 88.3%. 

Additionally, the Multilayer Perceptron (Rosenblatt, 1958; Zhang, 2010), a neural network model, was 

effective in the multinomial classification of acoustic patterns in audio clips, as explored by Zhang et al. 

(2016), providing detailed information on the distribution of various acoustic patterns in long-duration 

recordings, thus serving as another powerful tool for acoustic data analysis. 

Delving further into the realm of neural networks, Convolutional Neural Networks (CNNs) have stood out 

in soundscape analysis, particularly in spectrogram classification (Stowell et al., 2014; Pellegrini et al., 2020). 

Khamparia et al. (2019) explored environmental sound classification using CNNs and achieved an accuracy of 

77% on the ESC-10 dataset. This study underscores the efficiency of CNNs in recognizing and classifying 

spectrogram images, which are visual representations of sound frequencies over time. 

Acoustic Ecology, which originated with the pioneering works of Schafer (1977) and Truax (2001), has 

evolved with the development of Data Science and Artificial Intelligence. The integration of these disciplines 

has enabled deeper and more automated analysis of soundscapes, enhancing the understanding of ecological 

interactions and the impacts of human activities on the environment. The World Forum for Acoustic Ecology 

(WFAE), established in 1993, has been a platform for the dissemination and international recognition of this 

research area (Wrightson, 2000). 

The application of these techniques in the Cerrado can be an effective strategy for biome preservation. 

Identifying specific soundscapes associated with different Cerrado vegetation formations is a crucial step for 

implementing conservation and restoration measures. Acoustic analysis can assist in identifying degraded 

areas and evaluating the effectiveness of management practices, contributing to the sustainability and 

resilience of this ecosystem. 

In summary, the literature review indicates that soundscape analysis, supported by advances in Artificial 

Intelligence, is a promising approach for biodiversity assessment and ecosystem conservation. In the Cerrado, 

this approach can not only help understand the biome's complexity but also guide preservation and restoration 

efforts in the face of increasing anthropogenic pressures. 
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3 Methodology 

To investigate the central hypothesis that similar phytophysiognomic formations exhibit similar soundscapes, 

this study proposes to analyze the following guiding questions: 

 

● Model Efficiency: Which machine learning models, ranging from traditional statistical methods to 

advanced neural networks, are most efficient and effective in classifying the types of natural 

formations in the Cerrado based on their soundscapes? 

● Complexity and Computational Cost: How do the complexity and computational cost of the models 

impact the choice of the most appropriate method for classifying soundscapes? 

● Relevant Sound Signal Attributes: Which attributes of the sound signals are most relevant for the 

classification of the Cerrado soundscapes? 

 

To address these questions, the study analyzed the effectiveness of models using Mel Frequency Cepstral 

Coefficients (MFCCs) and spectrograms as input variables for the classification of soundscapes. Machine 

Learning and Deep Learning models such as Gradient Boosting, Random Forest, Logistic Regression, 

Multilayer Perceptron, and Convolutional Neural Networks were employed. 

Additionally, the study examined the impact and importance of considering method simplicity, training and 

prediction response time, and the ability to handle a large number of observations in a short period. Finally, it 

sought to understand the importance of the main features of the spectrogram in classifying the Cerrado 

soundscapes. 

The outlined objectives aim not only to validate the central hypothesis but also to contribute to the 

methodological advancement in the application of Artificial Intelligence for soundscape analysis in ecological 

contexts. By understanding the acoustic characteristics associated with each vegetation formation, this study 

significantly contributes to the preservation and restoration of the Cerrado biome and to the science of acoustic 

ecology as a whole. 

Adopting a methodical and structured strategy, the study followed four crucial steps that reflect the data 

science cycle as proposed by Shearer (2000). 

3.1 Data Collection 

Field acoustic data collection was a crucial step in this study and was carried out with the help of acoustic 

recording equipment developed for this purpose by the Laboratory of Acoustics and Environment (LACMAM) 

at the Polytechnic School of the University of São Paulo (USP). For a comprehensive analysis of the Cerrado 

soundscapes, three Ecological Stations (EEs) were selected, each representing one of the main vegetation 

formations of the biome: forest, grassland, and savanna. 

The chosen regions were the EE of Assis, representing the forest formation, EE of Itirapina, as an example 

of the grassland formation, and EE of Águas de Santa Bárbara, illustrating the savanna formation. These 

classifications were not arbitrarily assigned; they result from meticulous field studies conducted by specialists 

who examined the characteristics and densities of the vegetation at each site. This initial classification was 

essential to establish a reference point for subsequent acoustic analysis. 

The following figure presents visual representations of the three analyzed Ecological Stations: Assis, Santa 

Bárbara, and Itirapina. The images were sourced respectively from the Catalog of Plants of the Conservation 

Units of Brazil1 (Assis), the Institute of Environmental Research2 (Santa Bárbara), and the Scielo Brazil 

                                                        
1Available at: https://catalogo-ucs-brasil.jbrj.gov.br/descr_areas.php?area=EEAssis 
2Available at: https://www.infraestruturameioambiente.sp.gov.br/institutoflorestal/areas-protegidas/estacoes-ecologicas/santa-

barbara/ 
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platform3 (Itirapina). 

Fig. 2 Vegetation ormations of the Cerrado: Forest, Savanna, and Grassland. 

 

 

The simultaneous sound recording campaigns allowed for the capture of a broad spectrum of acoustic 

events and variations, including sounds emitted by fauna, noises generated by abiotic elements such as wind 

and rain, and any anthropogenic interferences. This holistic approach ensures that the captured sound profile is 

representative of the complexity and richness of the Cerrado biome. 

The volume of collected data was substantial, totaling approximately 3 TB of sound recordings from 

September to November 2019. The audio data from the EE of Itirapina were recorded in 5-minute files with a 

sampling rate of 8 KHz and 16-bit depth. In contrast, the soundscapes of the EE of Santa Bárbara and Assis 

were recorded in 3-minute files with a sampling rate of 32 KHz and 16-bit depth. Given the magnitude of the 

collected data, it became necessary to adopt a strategy to make the data volume more manageable while 

maintaining the integrity and representativeness of the information. 

To this end, a random selection of 2,500 files from each of the three Ecological Stations was performed, 

totaling 7,500 files and amounting to 70 GB of data, constituting what will be called the Temporal Database 

(TDB). The randomization of the files ensured that the regions and recordings, being independent, did not bias 

the sample, especially considering that the data were collected over a similar recording period for the three 

regions. This strategic reduction of the database ensured a diverse representation of biotic conditions, climatic 

conditions, and recording times, encompassing different scenarios such as winds, rains, and diurnal and 

nocturnal variations. This approach allowed the machine learning models to be trained efficiently without 

compromising their ability to learn and recognize the patterns of the Cerrado soundscapes in various contexts. 

                                                        
3Available at: https://doi.org/10.1590/S1676-06032008000300019 
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3.3 Modeling 

The modeling phase was a crucial step in this study, where the information contained in the AFDB was 

processed through a range of advanced machine learning techniques. The selection of models was based on a 

literature review and previous technological advances, encompassing traditional statistical methods to deep 

neural networks. Among the traditional models, Gradient Boosting, Random Forest, Logistic Regression, and 

Multilayer Perceptron were selected, using Mel Frequency Cepstral Coefficients (MFCCs) (Davis et al., 1980) 

as input variables. On the other hand, for the Convolutional Neural Network (CNN), spectrogram images were 

used as the basis for classification. 

Except for the MLP, the models were implemented with the tidymodels library (Kuhn et al., 2020; Kuhn et 

al., 2022) in R, which provides an integrated and consistent approach to statistical modeling and machine 

learning, following the principles of the tidyverse (Wickham et al., 2019). 

Among the packages offered by tidymodels are "tune" (Kuhn, 2024) and "parsnip" (Kuhn, Vaughan, 2024). 

The "tune" package plays a fundamental role in optimizing the hyperparameters of machine learning models. 

Hyperparameters are model settings that need to be specified before training and are not learned from the data. 

They can influence the model's effectiveness, and their optimization allows for the evaluation and comparison 

of different models, improving their performance. 

On the other hand, the "parsnip" package is used for model specification. It provides a consistent interface 

for defining and configuring machine learning models, regardless of the underlying computational engine 

implementing them. This package was extensively used in this study to define and adjust the hyperparameters 

of the Gradient Boosting, Random Forest, and Logistic Regression models. 

For the Gradient Boosting model, using the boost_tree function from the parsnip package, the following 

hyperparameters were adjusted: mtry, min_n, tree_depth, sample_size, learn_rate, and loss_reduction. Here, 

mtry refers to the number of variables available for splitting at each tree node, min_n is the minimum number 

of observations in the nodes, tree_depth is the maximum depth of any tree, sample_size is the fraction of the 

data used to build each tree, learn_rate is the learning rate, and loss_reduction refers to the minimum loss 

reduction required to make a new split in the tree. 

The Random Forest model, implemented through the rand_forest function from the parsnip package, had 

the hyperparameters mtry and min_n adjusted. Mtry, as in the previous model, is the number of variables 

available for splitting at each tree node, while min_n is the minimum number of observations in the nodes. 

In Logistic Regression, using the multinom_reg function from the parsnip package, the hyperparameters 

penalty and mixture were adjusted. The penalty refers to the amount of regularization applied, which helps 

avoid overfitting, while mixture determines the type of regularization applied (L1, L2, or a mix of both). 

The implementation of the CNN and MLP was carried out using the TensorFlow (GOOGLE, 2023) and 

Keras (Chollet et al., 2023) libraries, which are open-source tools for machine learning and deep neural 

networks. These libraries offer a flexible and powerful environment for building, training, and validating 

complex models, such as CNNs, which are particularly suitable for processing visual and acoustic data. 

The MLP architecture featured six intermediate layers, including two dense layers with 30 and 18 neurons, 

respectively, along with a dropout layer and a normalization layer, placed between the dense layers. The total 

number of adjustable parameters in the MLP model was 1,101. 

The CNN architecture comprised several layers, including convolutional layers, batch normalization layers, 

max pooling layers, and spatial dropout layers. The network starts with an input layer with dimensions 

250x250x3, representing the dimensions of the input images. 

Specifically, the model has three convolutional blocks, each with two convolutional layers, followed by a 

batch normalization layer, a max pooling layer, and a spatial dropout layer. The number of filters in the 
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convolutional layers progressively increases with each block, starting with 32, then 64, and finally 128. All 

convolutional layers use ReLU activation functions and have a kernel size of 5x5, with 'same' padding to 

ensure the output has the same dimension as the input. 

After the three convolutional blocks, the network has a global average pooling layer, followed by a flatten 

layer and a dense layer with 128 units and ReLU activation function. A dropout layer with a rate of 0.4 is 

applied before the output layer, which has three units and a softmax activation function, corresponding to the 

three classification categories. 

The model has a total of 815,139 adjustable parameters, of which 814,243 are trainable and 896 are not 

trainable. During training, the model was compiled using the Adam optimizer with a learning rate of 0.001, 

categorical_crossentropy loss function, and accuracy as the evaluation metric. Two callback functions were 

used: one to reduce the learning rate when the validation loss stopped improving and another to stop training 

when the validation accuracy exceeded 98% after 10 consecutive epochs above 97%. 

The model was trained for up to 300 epochs with a batch size of 64. Validation data were used to monitor 

the model's performance and adjust the learning rate as needed. The use of callbacks allowed for more efficient 

training, avoiding overfitting and saving computational time. 

The modeling methodology also included a strategic data split, separating the total dataset into three 

distinct parts: training, validation, and blind testing. The training set was used to adjust the models and teach 

them the data patterns. The validation set played a role in optimizing hyperparameters and preventing 

overfitting, ensuring model generalization. The blind test set, composed of data not exposed to the models 

during training, was crucial for testing the models' effectiveness in new and unknown conditions, providing a 

reliable performance evaluation. 

Each model underwent a careful training and validation process, aiming to maximize its accuracy and 

generalization capacity. Metrics such as accuracy, precision, and recall were used to evaluate each algorithm's 

performance, providing a comprehensive view of the models' effectiveness. Additionally, explainability 

techniques, such as LIME, were planned to be applied to the CNN to interpret the model's decisions and 

identify the most relevant acoustic features for classifying the Cerrado soundscapes. 

In summary, the modeling was conducted with methodological rigor, enabling not only efficient 

classification of soundscapes but also a detailed analysis of the models, contributing to the advancement of 

knowledge at the intersection of Acoustic Ecology and Data Science. 

3.4 Explainability 

Understanding the decisions made by machine learning models, especially in complex neural networks such as 

CNNs, is essential for validating the reliability and applicability of the results obtained. In this context, the 

explainability analysis focused on the predictions generated by the CNN, employing the LIME (Local 

Interpretable Model-agnostic Explanations) technique as proposed by Ribeiro et al. (2016). LIME is a 

methodology that facilitates the interpretation of complex models by introducing perturbations in the input 

data and observing the variations in the model's predictions. This technique induces the CNN to formulate 

local linear models that are inherently more understandable, revealing the impact of different areas of the 

spectrogram image on the classification of soundscapes. 

The "lime" library (Hvitfeldt et al., 2022) in R was used to perform the analyses. This library provides an 

efficient implementation of the LIME technique, allowing seamless integration with other R packages used for 

data analysis and visualization. The choice of this library is due to its flexibility and ability to provide precise 

local explanations, aligned with the needs of the explainability analysis applied in this study. 

The methodology implemented by LIME involves generating modified versions of the input data 

(spectrograms) and subsequently analyzing the changes in the CNN's predictions. This analysis allows 
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identifying which features of the images are crucial for the model's decisions. By applying LIME to specific 

spectrograms, it is possible to identify which frequency segments or temporal patterns are considered most 

relevant by the CNN in classifying a soundscape as belonging to a specific formation in the Cerrado. 

The adopted explainability approach not only demonstrated the relevance of the acoustic attributes but also 

promoted greater transparency in the model's predictive decisions. 

In summary, the methodology employed in this study allowed the development of effective statistical 

models and provided a detailed understanding of the predictive decisions. The use of LIME, in particular, 

ensured a consistent and reliable approach, enabling the validation of the CNN's predictions and a deeper 

interpretation of the characteristic acoustic patterns of the various formations in the Cerrado. The clarity in the 

models' decisions is a crucial aspect for advancing the application of Artificial Intelligence in ecological and 

environmental research. 

 

4 Results 
The application of machine learning models for the classification of Cerrado soundscapes revealed significant 

results. The performance of each model was evaluated based on metrics of accuracy, precision, and recall, as 

presented in Table 1. 

 

Table 1 Performance of the developed models according to the analyzed metrics. 

Model Accuracy Precision Recall Training Time 

Gradient Boosting 93% 93% 93% 5,86 minutes 

Random Forest 92% 92% 92% 5,31 minutes 

Logistic Regression 82% 83% 82% 9,89 seconds 

Multilayer Perceptron 83% 79% 69% 2,33 minutes 

CNN 98% 97% 97% ~ 8 days 

 

The Convolutional Neural Network (CNN) demonstrated superiority, achieving 98% accuracy, 97% 

precision, and 97% recall. This remarkable performance indicates that the CNN was able to accurately identify 

the different formations of the Cerrado from the soundscapes. However, the substantially longer training time 

(~8 days) compared to the other models must be considered in the context of practical application. 

On the other hand, the strategy of "repetitive classification" proved to be effective when using moderately 

performing models for frequently occurring events. This strategy involves repeatedly applying the same model 

to several small samples of the same sound event. The final decision is made based on the most frequent 

response among the classifications, using the majority voting method. 

This approach is effective due to the consistency and convergence observed in the accurate identification 

of the Cerrado's natural formation in various observations. This reflects the principles of the Law of Large 

Numbers (Bernoulli, 1713), inferring that less complex models, with an acceptable accuracy rate, tend to 

achieve an overall accuracy rate of 100% as the number of observations of the same sound event increases 

infinitely. 

Nonetheless, although the CNN requires significant investment in terms of time and computational 
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generated by dynamically analyzing multiple samples, establishing a reliable precedent for environmental 

categorizations. 

The use of LIME in the CNN analysis provided additional insights, allowing not only the identification of 

Cerrado formations with high accuracy but also the understanding of the specific acoustic properties that 

determine each classification. This elucidation highlights the importance of combining different techniques 

and models to extract the maximum value from the analyzed data. 

In conclusion, the research emphasized the relevance of balancing various factors in the choice of models 

for acoustic landscape classification. The multiparametric perspective of this article highlights the 

effectiveness of interdisciplinarity in applying artificial intelligence for monitoring and conserving natural 

ecosystems. 

 

6 Conclusions 

The investigation conducted in this study provided robust evidence supporting the central hypothesis that 

similar natural formations have similar soundscapes. Through the application of machine learning and deep 

learning models, it was possible to accurately classify the formations of the Cerrado based on their acoustic 

landscapes, validating the hypothesis and demonstrating the potential of these technologies in ecological 

analysis. 

Addressing the first guiding question, it was found that both traditional statistical methods and advanced 

neural networks are efficient in classifying soundscapes. However, the Convolutional Neural Network (CNN) 

stood out as the most effective model, although it requires significant training time and computational 

resources. 

Regarding the second question, the complexity and computational cost of the models influenced the choice 

of the most appropriate method. While the CNN offered the best performance, models such as Gradient 

Boosting and Random Forest proved to be viable and efficient alternatives, especially when considering the 

repetitive classification strategy and the majority voting principle for high-exposure events. 

In relation to the third question, the sound signal attributes that were most relevant for the classification of 

Cerrado soundscapes were the specific frequencies identified by the models, especially the CNN, whose 

interpretation was enhanced by the use of LIME. 

This study concludes that the integration of Artificial Intelligence in soundscape analysis is a promising 

approach for biodiversity assessment and ecosystem conservation. The developed and tested models offer 

valuable tools for identifying natural formations, contributing to the preservation and recovery of threatened 

biomes such as the Cerrado. The choice of the appropriate model should be guided by a balance between 

accuracy, efficiency, and practicality, considering the specific needs of each application. The explainability of 

the models, particularly the CNN, reinforces confidence in the classification decisions and provides valuable 

insights for future research and practical applications. 
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