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Abstract 

The genetic code is a set of codons that contains genetic information regarding the creation of protein 

molecules. We studied nilpotent graphs in genetic code algebra in this work. The vertex set is the set of all 

non-nilpotent elements of a ring, and two vertices are neighbouring if and only if their sum is nilpotent. 

Different measurements of centrality have been thoroughly examined in our current paper. We also 

investigated three network parameters: clustering coefficient, degree of dispersion, and skewness. 
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1 Introduction 

The genetic code is the set of principles that govern the translation of information stored in genetic material 

(DNA or RNA sequences) into proteins. Proteins are the fundamental building blocks and functional 

components of all living creatures. Proteins are made up of amino acids, and each protein is made up of a 

linear chain of amino acids. There are now 20 distinct amino acids identified in proteins. Each amino acid is a 

triplet code (codon) comprising four potential bases: A, C, G, and T in DNA (T (Thymine) is substituted by U 

(Uracil) in RNA). The chain of amino acids takes on diverse forms to generate different proteins. The process 

of transmitting information from DNA to protein construction involves two steps: transcription and translation. 

The sequence of nucleotides is not properly duplicated while reproducing the strand of DNA due to mutation. 

This alters protein formation. Codons may undergo several types of alterations, including point mutations, 

deletions, insertions, and inversions. We shall solely look at point mutation in this study. A point mutation is 

characterised by a single base change in the gene sequence. It substitutes one base nucleotide with another in 

the genetic material, DNA or RNA. This mutation might occur in a single point, two points, or more. Again, 

transition mutation refers to a point mutation from purine ሺܣ, ሻܩ  to purine or pyrimidine ሺܥ, ܶሻ  to 

pyrimidine, whereas transversion mutation refers to a point mutation from purine to pyrimidine or vice versa. 
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Point mutations typically occur during DNA replication. 

The genetic code in DNA (or RNA) is made up of 64 codons, however there are only 20 amino acids. This 

suggests that there is some overlap, i.e., many codons code for the same amino acid. Synonymous codons are 

codons that code for the same amino acid. This may be viewed as a function of many to one when it comes to 

conveying codons to amino acids. As a result, it's worth investigating if the genetic code has any mathematical 

feature that optimises as the number of codons approaches three times the number of amino acids (Rudin et al., 

2011). The mistake (acceptable mutation) frequency discovered in codons indicates the relevance of base 

position. From the third base to the first base, then to the second base, the number of mistakes falls. The 

second base is the most physiologically important, whereas the third is the least important codon. 

Sanchez et al. discovered an optimum codon arrangement of the genetic code (Bagler and Sinha, 2007). 

Furthermore, the codons are organised in such a way that some key links between codons and amino acids are 

highlighted. Different formal mathematical models of the genetic code have been developed for this aim. 

Many researchers studied in this topic and attempted to provide an algebraic formulation of the genetic 

code's structure (Crick et al. 1961; Bonacich, 1972; Wong, 1975; Bertholf and Walls, 1978; Kimura, 1981; 

Osawa et al., 1992; Watts and Strogatz, 1998; Szathmáry, 1999; Balakrishnan, 2002; Newman, 2002; Wuchty 

and Stadler, 2003; Kundu, 2005; Sanchez et al., 2005; Aftabuddin and Kundu, 2007; Bagler and Sinha, 2007; 

Koonin and Novozhilov, 2009; Sengupta and Kundu, 2012; Akhtar and Ali, 2014; Akhtar et al., 2015; Koonin 

and Frozen, 2017; Ali and Bora, 2021; Boruah and Ali, 2022). Hornos and Hornos were the first to use group 

theoretical approaches to investigate genetic coding (Kundu, 2005). Sanchez et al. proposed a novel approach 

for quantifying the link between DNA genomic sequences (Bagler and Sinha, 2007; Bertholf and Walls, 1978). 

They stated that genetic code developed to reduce the consequences of transcription and translation mistakes. 

Ali and Borah (2021) and Gohain et al. worked in the same topic and described various algebraic and 

topological structures of the genetic code (Akhtar et al., 2015). Some interesting correlations between 

algebraic and biological features have been discovered using these structures. ܩሺܴሻ is the nilpotent graph of a 

ring ܴ, where two unique vertices ݔ and ݕ are near if ݔ    is nilpotent, where ݈ܰ݅ሺܴሻ is the set of ݕ 

nilpotent elements of a ring ܴ. The primary objective for this effort is to investigate mathematical structures, 

namely graph structures that may naturally emerge in genetic code. 

 

2 Initial Graph Concepts 

A graph is an ordered triple ܩ ൌ ሺܸሺܩሻ, ,ሻܩሺܧ ܫீ ሻ , where ܸሺܩሻ is a nonempty set, ܧሺܩሻ is a set disjoint 

from ܸሺܩሻ, and ீܫ  is an “incidence” relation that associates with each element of ܧሺܩሻ an unordered pair of 

elements (same or distinct) of ܸሺܩሻ (Zhang, 2016, 2018). Elements of ܸሺܩሻ are called the vertices (or nodes 

or points) of ܩ, and elements of ܧሺܩሻ are called the edges (or lines) of ܩ. ܸሺܩሻ and ܧሺܩሻ are the vertex 

set and edge set of ܩ, respectively. If for the edge ݁ of ܫீ ,ܩ ሺ݁ሻ ൌ ሼݑ, ܫீ ሽ, we writeݒ ሺ݁ሻ ൌ  .ݒݑ

If ீܫ ሺ݁ሻ ൌ ሼݑ,  are called the end vertices or ends of the edge ݁. Each edge ݒ and ݑ ሽ, then the verticesݒ

is said to join its ends & we say that ݁ is incident with each one of its ends. Also, the vertices ݒ&ݑ are then 

incident with ݁. A vertex ݑ is a neighbor of ݒ in ܩ if ݒݑ is an edge of ܩ and ݑ is not equal to ݒ. A 

walk in a graph ܩ is an alternating sequence ܹ: ݒ ݁ଵ ݒଵ ݁ଶ ݒଶ  ………݁ݒ of vertices and edges beginning 

and ending with vertices in which ݒିଵ  and ݒ are the ends of ݁. A walk is called a trail if all the edges 

appearing in the walk are distinct. It is called a path if all the vertices are distinct. Two vertices ݑ and ݒ of 

ݑ  are said to be connected if there is a ܩ െ  be a graph of ܩ otherwise it is disconnected. Let ,ܩ path in ݒ

order ݊ with vertex set ܸ ൌ ሼݒଵ ,   ……… .  ,      ݒሽ. The adjacency matrix of ܩ is the ݊ ൈ ݊ matrix ܣ ൌ ሺܽሻ , 

where ܽ ൌ 1 if there is an edge from vertex ݒ to vertex ݒ and ܽ ൌ 0 otherwise.  

The centrality measure of a vertex in graph theory shows its relative significance inside the graph ܩ 
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(Zhang, 2016, 2018). It is a real valued function ݂: ܸ ՜ ܴ , where ܸ is the vertex set of the graph  ܩ. 

Degree centrality 

The number of nodes to which a node ݑ is directly linked, indicated by ܥௗ ሺݑሻ, is the degree centrality of that 

node (Zhang, 2016, 2018).  

Eigenvector centrality 

The eigenvector centrality of the associated graph is the eigenvector of the largest eigenvalue of the adjacency 

matrix (Bonacich, 1972). 

Betweenness centrality 

Betweenness centrality (Watts DJ, Strogatz, 1998) of a node ݒ is defined as-  

 

ሻݒ௧௪ሺܥ ൌ    
ሻݒሺߪ
אஷ௩אஷ௩ߪ

 

Where, ߪ  and  ߪሺݒሻ are the number of shortest paths from vertex ݉ to ݊ and the number of shortest 

paths from ݉ to ݊  that pass through ݒ (Watts DJ, Strogatz, 1998; Zhang, 2016, 2018).  

Closeness centrality 

Closeness centrality is defined as follows- 

 

ሻݑሺܥ ൌ
ሺ݊ െ 1ሻ

∑ ݀ሺݑ, אሻ௩ݒ
 

 

Where, ݊ and ݀ሺݑ,  and ݑ ሻare the total number of nodes of the network and shortest path distance betweenݒ

 .(Zhang, 2016, 2018) ݒ

 

3 Graph on Genetic Code  

Sanchez et al. (2005) discovered that the four RNA (or DNA) bases may be organised or ordered based on 

their codon-anticodon relationships. The hydrogen bond number and chemical type (purine and pyrimidine) of 

bases are crucial factors in this. Two ordering of the basis sets are obtained: ሼܣ, ,ܥ ,ܩ ܷሽ and ሼܷ, ,ܩ ,ܥ  .ሽܣ

They studied the sum operation of the bases produced from the aforementioned two alternative ordering 

,ܣ) ,ܥ ,ܩ ܷ and ܷ, ,ܩ ,ܥ  which makes the two sets isomorphic to ܼସ. Table 1 shows the sum operation of ,(ܣ

the bases produced from the two-alternative ordering. They also established the sum and product operations on 

the set of codons. It was observed that the group obtained on the set of codons is isomorphic to the group of 

integer module 64, ሺܼସ, ሻ. These two sum & product operations on the set of whole codons represents a 

ring structure isomorphic to the ring of ሺܼସ, , . ሻ. In 2015 Akhtar et al. discussed the total graph of this ring 

structure ܼସ. By taking the ordered base set ሼܣ, ,ܥ ,ܩ ܷሽ isomorphic ܼସ from Sanchez et al., 2005, Boruah 

et al. (2022) observe that ܼସ ൈ ܼସ ൈ ܼସ forms a ring structure isomorphic to the ring of ሺܼସ ൈ ܼସ ൈ ܼସ, , . ሻ. 

In this paper we have discussed nilpotent graph by taking base set ሼܣ, ,ܥ ,ܩ ܷሽ and ring ሺܼସ ൈ ܼସ ൈ ܼସ, , . ሻ 

and ሺܼସ, , . ሻ. 

 

  ଵ= {CCC, CCU, CUC, CUU, UCC, UCU, UUC, UUU}ܩ

 ,ଶ= {AAC, AAU, CAC, CAU, GAC, GAU, UAC, UAU, ACC, ACU, CCC, CCU, GCC, GCU, UCC, UCUܩ

AGC, AGU, CGC, CGU, GGC, GGU, UGC, UGU, AUC, AUU, CUC, CUU, GUC, GUU, UUC, UUU} 
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Table 1 Sum operation on ሼܣ, ,ܥ ,ܩ ܷሽ&ሼܷ, ,ܩ ,ܥ  .ሽܣ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 Product operation on ሼܣ, ,ܥ ,ܩ ܷሽ. 
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Table 3 The genetic code table induced by the order {A, C, G, U}. 

 

 

 

Table 4 The genetic code table induced by the order {A, C, G, U}. 

 

A                    C                   G                  U  
      No   Codon   
AminoAcid 

No          Codon   
AminoAcid

No         Codon   
AminoAcid

No        Codon AminoAcid  

A 000          AAA              K  
     001         AAC              N 
     002         AAG              K 
     003         AAU              N    

010          ACA              T  
011          ACC              T 
012          ACG              T 
013          ACU              T       

020          AGA              R  
021          AGC              S 
022          AGG              R 
023          AGU              S       

030        AUA            I  
031        AUC            I 
032        AUG           M 
033        AUU           I       

A 
C 
G 
U 

C 100          CAA              Q  
     101         CAC              H 
     102         CAG              Q 
     103         CAU              H    

110          CCA              P  
111          CCC              P 
112          CCG              P 
113          CCU              P       

120          CGA              R  
121          CGC              R 
122          CGG              R 
123          CGU              R      

130          CUA             L  
131          CUC             L 
132          CUG             L 
133          CUU             L       

A 
C 
G 
U 

G   200         GAA              E   
      201         GAC              D   
      202         GAG              E 
      203         GAU              D   

210          GCA              A  
211          GCC              A 
212          GCG              A 
213          GCU              A      

220          GGA              G  
221          GGC              G 
222          GGG              G 
223          GGU              G      

230          GUA             V  
231          GUC             V 
232          GUG             V 
233          GUU             V       

A 
C 
G 
U 

U   300          UAA              -  
      301          UAC             Y 
      302          UAG              - 
      303          UAU             Y   

310          UCA              S  
311          UCC              S 
312          UCG              S 
313          UCU              S       

320          UGA              -  
321          UGC              C 
322          UGG             W 
323          UGU              C      

330          UUA             L  
331          UUC             F 
332          UUG             L 
333          UUU             F       

A 
C 
G 
U 
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ܷܷܷ 7 1 0 1 

 

 

Table 6 Centrality values of codons for ܩଶ. 

Vertex Degree 

Centrality 

ሺࢊሻ 

Closeness 

Centrality 

ሺࢉሻ 

Betweenness 

Centrality 

ሺ࢚࢝࢈ሻ 

Eigenvector 

Centrality 

ሺࣅሻ 

1 0 1 31 

1 0 1 31 ࢁ

1 0 1 31 

1 0 1 31 ࢁ

1 0 1 31 ࡳ

1 0 1 31 ࢁࡳ

1 0 1 31 ࢁ

1 0 1 31 ࢁࢁ

1 0 1 31 

1 0 1 31 ࢁ

1 0 1 31 

1 0 1 31 ࢁ

1 0 1 31 ࡳ

1 0 1 31 ࢁࡳ

1 0 1 31 ࢁ

1 0 1 31 ࢁࢁ

1 0 1 31 ࡳ

1 0 1 31 ࢁࡳ

1 0 1 31 ࡳ

1 0 1 31 ࢁࡳ

1 0 1 31 ࡳࡳ

1 0 1 31 ࢁࡳࡳ

1 0 1 31 ࡳࢁ

1 0 1 31 ࢁࡳࢁ

1 0 1 31 ࢁ

1 0 1 31 ࢁࢁ

1 0 1 31 ࢁ

1 0 1 31 ࢁࢁ

1 0 1 31 ࢁࡳ

1 0 1 31 ࢁࢁࡳ

1 0 1 31 ࢁࢁ

ܷܷܷ 31 1 0 1

 

 

 In a nilpotent network, centrality parameters emphasize the degree of similarity or closeness of one node 

to another or to its neighbors. The average number of connections a node has with other nodes in the network 
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is referred to as degree centrality. The greater the value of degree centrality, the greater the number of 

connections. After examining all of the codons (Table 5 and Table 6), it is discovered that all codons have the 

highest value in all centrality measures. All codons are linked to every other codon. As a result, all codons 

have the minimum cumulative shortest path distance and a high closeness centrality value. All of the 

observations show that the degree of the all codons are high, and thus the betweenness centralities are also 

high. Furthermore, the sum of the direct and indirect links of all the codons is found to be the greatest. As a 

result, eigenvector centrality is greatest in all codons. The shorter the distance between two nodes, the stronger 

the connection, and the higher the value of betweenness centrality, the greater the influence in the network. As 

a result, these codons have a greater evolutionary contribution (Chakrabarty and Parekh, 2014). The codons 

with the highest eigenvector centrality are said to play an important role in the evolutionary process. 

 

5 Network Parameters 

To analyse biological networks, we employ various network parameters. In the following sections, we will 

look at a few of them in order to interpret the network's communication pattern.  

5.1 Codon clustering coefficients 

Clustering coefficient is defined as the capacity of a graph to be divided into clusters. Clusters are a subset of 

the set that includes edges that connect vertices to vertices. The clustering coefficient ܥ of a specific node  

Ԣ݅Ԣ  is defined as the ratio of the total number of links  ݁  of neighbours to its nearest neighbours. The 

average clustering coefficient for the entire network is ܥሺܥ  ൌ
ଶ

ሺିଵሻ
ሻ, where ܭis the degree of node Ԣ݅Ԣ 

and 0  ܥ  1). The relationships between neighbouring nodes become stronger as the value of the 

clustering coefficient increases. As a result, it slows the spread of information (Sengupta and Kundu, 2012).  

Clustering coefficients for ܩଵ and ܩଶ are given in Table 7 and 8, respectively.  

 

 

 

Table 7 Clustering coefficient of the codons for ܩଵ. 

ܥܥܥ 

ࢁ 1

ࢁ 1

ࢁࢁ 1

ࢁ 1

ࢁࢁ 1

ࢁࢁ 1

ܷܷܷ 1

 

Table 8 Clustering coefficient of the codons for ܩଶ. 

ܥܣܣ 

ࢁ 1

 1

ࢁ 1

ࡳ 1

ࢁࡳ 1

ࢁ 1
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ࢁࢁ 1

 1

ࢁ 1

 1

ࢁ 1

ࡳ 1

ࢁࡳ 1

ࢁ 1

ࢁࢁ 1

ࡳ 1

ࢁࡳ 1

ࡳ 1

ࢁࡳ 1

ࡳࡳ 1

ࢁࡳࡳ 1

ࡳࢁ 1

ࢁࡳࢁ 1

ࢁ 1

ࢁࢁ 1

ࢁ 1

ࢁࢁ 1

ࢁࡳ 1

ࢁࢁࡳ 1

ࢁࢁ 1

ܷܷܷ 1

 The clustering coefficient of the amino acid depends on the degree of amino acid as well as the number of 

direct interactions between the neighbouring amino acids. For the network ܩଵ and ܩଶ, we observe that all the 

codons have a high clustering coefficient value of 1. The whole networks have a clustering coefficient value of 

1, which is same as all the codons. The clustering coefficient is getting higher with the higher number of links 

between neighbours. So, the higher clustering coefficient values of the network slow down the flow of 

evolutionary messages. From the clustering coefficient of the whole networks and the clustering coefficients of 

the codons, we can say that the evolutionary mechanism is comparatively slow in the neighbourhood of all 

codons in comparison to the whole network.  

5.2 Degree of distribution & skewness 

In this section we shall discuss the degree of distribution & Pearson’s skewness of the codons. The degree 

distribution ܲሺ݇ሻ  is actually the fraction of nodes with degree ݇. If we have ݊ nodes with ݊ number of 

nodes having degree ݇, then ܲሺ݇ሻ ൌ
ೖ


. In general, the degree distribution represents the probability that a 

chosen node will have accurately ݇ links.  

 Another important statistical parameter is skewness. Skewness is defined with the measure of symmetry 

or asymmetry of the distribution. Skewness idea was first introduced by Karl Pearson in 1895. It’s denoted as 

ܵ. Depending upon mean and median, skewness may be positive or negative. In our study, we have used the 

Karl Pearson’s coefficient of skewness, defined as 
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S୩  ൌ
3ሺMean െMedianሻ
Standard deviation

 , െ3  S୩  3 

 For symmetrical (i.e., normal) distribution ܵ ൌ 0. If ܵ  0 , then it’s positively skewed. If ܵ ൏ 0 , 

then we consider negatively skewed. 

 Table 9 and Table 10, shows the degree of distribution values of different codons for ܩଵ and ܩଶ. From 

Table 9 and Table 10, Pearson’s coefficient of skewness is found to be 0. The zero-value led us conclude that 

the degree of distribution of the codons (for ܩଵ and ܩଶ) are symmetrical distribution. 

 

 

Table 9 Degree distribution of the codons for ܩଵ. 

ܥܥܥ 

ࢁ 1

ࢁ 1

ࢁࢁ 1

ࢁ 1

ࢁࢁ 1

ࢁࢁ 1

ܷܷܷ 1

 

 

Table 10 Degree distribution of the codons for ܩଶ. 

ܥܣܣ 

ࢁ 1

 1

ࢁ 1

ࡳ 1

ࢁࡳ 1

ࢁ 1

ࢁࢁ 1

 1

ࢁ 1

 1

ࢁ 1

ࡳ 1

ࢁࡳ 1

ࢁ 1

ࢁࢁ 1

ࡳ 1

ࢁࡳ 1

ࡳ 1

ࢁࡳ 1

ࡳࡳ 1

ࢁࡳࡳ 1
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ࡳࢁ 1

ࢁࡳࢁ 1

ࢁ 1

ࢁࢁ 1

ࢁ 1

ࢁࢁ 1

ࢁࡳ 1

ࢁࢁࡳ 1

ࢁࢁ 1

ܷܷܷ 1

 

 

6 Conclusion 

As shown by Sanchez et al., 2005 an algebraic structure, viz., ring ሺܼସ, , . ሻ naturally occurs in the genetic 

code. Again, weknow that given an algebraic structure, different graph structures can be obtained from it. In 

this paper we have made an attempt to investigate the nilpotent graph structure of the genetic code. A one-one 

mapping between each pair of graphs have been obtained. Next, different centrality measures are applied here 

as a graph theoretic tool to study the influence of each codon (Both ܩଵ and ܩଶ). From these centrality 

measures we can summarize that all codons (Both ܩଵ and ܩଶ) have equal importance in the evolutionary 

process. We have also observed that all codons (Table 7 and Table 8) have high clustering coefficient values. 

So, the rate of the evolutionary process is comparatively slow in the vicinity of all codons (Both ܩଵ and ܩଶ). 

Lastly, we have observed that the degree of distribution is symmetrical. 
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