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Abstract

In this study, we analyze the state space of a Boolean network modeling diphtheria pathogenesis, focusing on
key genes such as Tox, Rep, INF1/INF2, TLR, AP1, IL6, and TNF. We introduce targeted perturbations to
reveal how the network responds and converges to its attractors. Our approach utilizes semi-tensor product
techniques and permutation methods to recast the Boolean dynamics into a linear algebraic scheme, enabling
efficient identification of transient states, stable attractors, and Garden-of-Eden states. This work fills an
important gap by clarifying how specific gene interactions drive the network toward non-pathogenic states.
Our results show that altering regulatory relationships, particularly those between Rep, Tox, and interferon
signals, significantly influences basin sizes and attractor stability, thereby enhancing our understanding of the
network’s resilience and informing potential therapeutic strategies.
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1 Introduction

Diphtheria, a severe infectious disease caused by the bacterium Corynebacterium diphtheriae, has historically
posed significant health challenges worldwide. Characterized by symptoms suchas sore throat, low-grade fever,
and the formation of a pseudomembrane in the upper respiratorytract, diphtheria can lead to severe
complications if not promptly treated. The primary virulencefactor of C. diphtheriae is the diphtheria toxin
(Kolibo and Romaniuk, 2001), which inhibitsprotein synthesis in host cells, leading to tissue damage and
systemic effects. Understanding thecomplex interactions among the genes involved in toxin production
(Schmitt et al., 1992), immune response (Moehring et al., 1971), and disease transmission is crucial for
developing effectivetherapeutic strategies (Harris et al., 2002; Kashiwagi et al., 2014).
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In recent years, computational modeling has emerged as a powerful tool to dissect the intricate gene
regulatory networks underlying various pathogenic processes (Qu et al., 2015; Possieri and Teel, 2017; Zhang,
2018; Menini et al., 2019; Shu et al., 2021; Kayoh and Ugbene, 2023; Ugbene and Utoyo-Ovokaeefe, 2024;
Ugbene and Agwemuria, 2024), including diphtheria. One such approach is the use of Boolean networks,
which provide a simplified yet insightful representation of geneinteractions by modeling genes as binary
variables, either active (1) or inactive (0) (Wilson et al., 2019). This scheme allows researchers to simulate
and analyze the dynamic behavior of genenetworks under different conditions. A notable study by Ugbene and
Utoyo (2024) employed a Boolean network model to investigatethe gene regulatory mechanisms associated
with diphtheria pathogenesis. Their model focusedon eight critical genes implicated in toxin production and
immune response (Pimenta et al., 2008a; Holmes, 2000; Hadfield et al., 2000). Through dynamic simulations,
they identified three distinct attractors within the network, each corresponding to a potential disease state
(Belsey et al., 1969; Pimenta et al., 2008b). These attractors represent stable patterns of gene expression that
thesystem gravitates toward over time, offering valuable insights into the possible outcomes of
geneinteractions during infection.

While the identification of attractors provides essential information about the stable states ofthe system, a
comprehensive understanding of the disease mechanism necessitates a thoroughexploration of the entire state
space of the Boolean network. The state space encompasses all possible configurations of the network,
detailing how the system transitions from one state to another (Yu et al., 2019; Yang et al., 2020; Yuan et al.,
2019). Analyzing this space can reveal transient states, pathways leading to attractors, and potential
intervention points to alter diseaseprogression. To achieve a detailed analysis of the state space, advanced
mathematical tools and methodologies are required. One such approach is the semi-tensor product (STP)
method developed by Cheng and Qi (2010). The STP technique transforms logical functions into algebraic
forms, enabling the representation of Boolean networks as discrete-time linear dynamic systems. This
algebraic representation facilitates the systematic examination of network properties, including fixed points,
cycles, and transient behaviors (Wang and Albert, 2009; Wang et al., 2020; Veliz-Cubaet al., 2014). By
converting the Boolean dynamics into a linear scheme, the STP method allowsor the application of linear
system theories to analyze the network’s structural and functional characteristics. Another innovative
methodology is the permutation-based approach introduced by Wang et al. (2023). This technique involves
representing the state transitions of a Boolean network using permutation matrices, which capture the
rearrangement of states under the network’s dynamics. Bystudying these permutations, researchers can gain
insights into the cyclical patterns and invariant subsets within the state space. This method offers a unique
perspective on the network’s behavior, particularly in identifying symmetries and conserved structures that
may not be apparent through other analytical techniques.

In this study, we aim to build upon the foundational work of Ugbene and Utoyo (2024) by conducting an
in-depth analysis of the state space of the perturbed diphtheria pathogenesis Boolean network. Utilizing the
semi-tensor product method of Cheng and Qi (2010) alongside the permutation-inspired approach of Wang et
al. (2023), we seek to uncover the full spectrum ofdynamic behaviors exhibited by the network. Our objectives
include identifying all possible statetransitions, mapping out the pathways leading to various attractors, and
pinpointing potential control nodes that could serve as targets for therapeutic intervention. By integrating these
advanced analytical methodologies, we strive to provide a comprehensive understanding of the gene regulatory
mechanisms driving diphtheria pathogenesis. Such insights are essential for the development of targeted
strategies aimed at disrupting the disease process and improving patient outcomes.
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2 Methodology

In this section, we introduce a different method for analyzing Boolean networks.

2.1 Semi-tensor products

As described in Cheng and Qi (2010), consider a row vector U of dimension mq and a column vector V of
dimension g. We partition U into g segments, denoted as U*,U?,...,U4, each forming a 1 x mrow. The
semi-tensor product (STP), represented by < (left semi tensor product), is defined as:

{U xV=3l_ Ukv, e R™, o

VI UT =31 v (UHT € R™

Given matrices P € M,y,, and Q € M, if m is a multiple of s, such thatm = sk, we denote this as
P >, Q. Alternatively, if s is a multiple of m, so that s = mk, we denote it as P <, Q. The semi-tensor
product of P and Q, expressed as D = P x Q, consists of r x tblocks structured as:

DY =P'xQji=1..rj=1..,t, )

where P! represents the i-th row of P and Q; denotes the j-th column of Q. Fundamental properties of the
STP include: The STP adheres to the following rules (whenever the operations are well defined):

1. Distributive Property

PXx((AQ +uR) =APxQ + uP xR;(3)
(AQ+uR)yxP =0 xP+uRxP,ALueR. (4)

2. Associative Property

Px(QxR)=(PxQ)XR. (5
If P>, Q,then (where & represents the Kronecker product):
PxQ=PQ®In); (6)
Likewise, if P < @, then:

PxQ =PI (7)

Given P € My
1. For a row vectori € R1*S:

PxW =W x(I; ® P); (8)
2. For a column vector W € RS*!:

WxP=(Q®P)xW. (9)

If P € M,,,, and either r divides m or vice versa, then:

[Ph:=P x - x P]

htimes

is well-defined. Notably, for any column or row vector ¢, {" is always valid.Define a delta set as A,:=
{y,{|j =1,2,...,h}, where y,{ represents the j-th column of the identity matrix I,. A matrix P € M, 1S
classified as a logic matrix if » = 2% and m = 2P for some a,b € Z,. The set of all such logic matrices is
denoted as L. A direct computation reveals, that:

If P,Q € L,then PxQ € L.
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This property is useful in Boolean network models, where relevant matrices belong to £, ensuring that their
semi-tensor products are well-defined.For a matrix P = [yrjl,yrjz, ...,yrjm], we use the compact notation:

P =v U1 j2 s ml
A swap matrix S[r,m], an rmXrm matrix, is constructed by labeling its columns as
(11,12,..,1m,...,r1,7r2,..,rm) and its rows as (11,21,...,r1,...,1m, 2m, ...,rm). The elements at position
((K,L),(k, 1)) aregiven by:

_ _ (1, K=kandL =1,
St T VKEYLL =10 otherwise.

For r = m, we use the notation Sj,,,;: = S[m, m]. For example, setting » = 3 and m = 2, the swap matrix
5[3,2] is:

(1) (12 2D (22 G G)a1

10 0 0 0 0 |a

0 0 0 1 0 0 |13
Sea=[0 1 0 0 0 0 |5

0 0 0 0 1 0 |50

o o 1 0 0 0

o o o o o 1 169

which simplifies to:
Si2) = ¥6[1,3,5,2,4,6].
For U € R" andV € R™:
Srmy XU XV =V XU, Sy XV xU=UxV.
If P€M,y,,and Q € M,,;, then:
PQ =P xQ.

This establishes the semi-tensor product as a generalization of conventional matrix multiplication, allowing
omission of the x symbol when standard matrix multiplication applies.

Now, we revisit the matrix representation of logical operations. Under this scheme, a logical variable is
represented as a vector, while an m —ary logical function is represented by a 2 x 2™ matrix, referred to as
the structural matrix of the function. This formulation allows logical functions acting on m logical variables
to be expressed as a matrix-vector product. Further details can be found in Cheng and Qi (2005). First, we
introduce some fundamental notations and results concerning logical expressions. The logical domain, denoted
by E, is given by:

E={A=1,B =0}

An m —ary logical function is defined as a mapping f:E™ — E. To adopt the matrix representation, we

T T
associate each element in E with a vector as A ~ [(1)] and B ~ [(1)] , and define:

& = (o] [}

Using this vector representation, we define the structural matrix of a logical function. A 2 x 2™ matrix Ny,
is termed the structural matrix of an m —ary logical function v, if
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P(Q1, Q2 ) Q) = Ny Q1 Q3 ... @, Where Qy, ..., O, € Ey.

If such a matrix exists, it uniquely characterizes the logical function. To demonstrate the existence of this
matrix for every logical function, we introduce a preparatory concept. Define a matrix, referred to as the
power-reduction matrix, as follows (in condensed notation):

Ny = y,4[1,4].
The name derives from the following property. Let Q € E,,. Then we have
Q% = NQ. (10)

A proof of the subsequent theorem can be found in (Qi and Cheng, 2008).Any logical function
G(Q4, ..., Q) with logical arguments Q4, ..., Q,, € E,, can be expressed in the canonical

G(Q1) -+, Qm) = NgQ10Q; ... Oy, (11)

where Ngis a 2 x 2™ matrix, known as the structural matrix of G. Next, consider a fundamental unary
logical operation: Negation, —=Q, along with four fundamental binary logical functions (Rade and Westergren,
1998): Disjunction, Q; V Q,; Conjunction, Q; A Q,; Implication, Q; — Q,; Equivalence, Q; < Q,. Their
structural matrices are as follows:

N—|:=Nm =)/2[2’1];
Ny:=Ng; =v,[1,1,1,2];N, = N.:=v,[1,2,2,2]; (12)
N, =N; =v,[1,211];N.:=7v,[12,21].

FX,Y) =X —=Y)V(=X).
Using the vector representation of logical variables, equation (12), and the transformation matrix, we obtain:

F(X,Y) = Ng(N;XY)(NinX)
= NgN;(I4 @ Np)XYX
= NgN;(I, ® Nm)XS[Z]XY
= NgNi(I4 @ Nyp)(I; ® 5[2])X2Y
= NgN;(I4 ® Np)(Iz @ Sp21)NsXY.

Thus, we conclude that
Np = NgN;(I4 @ Nyp)(I; @ 5[2])Ns =7.[12,1,1].
2.2 Dynamics of Boolean networks

A Boolean network (Farrow et. al, 2004) consisting of nodes Bj, B, ..., By, is defined as:

Birs1 = 91(Bie, Bogy oy Bino),
Byrr1 = 92(Bir, Bags ooy Bir),

(13)
Bmi+1 = Gm(Bir, Bags ooy Bing),
where g;, for i = 1,2, ..., m, are Boolean functions.Consider a Boolean network given by:
Brys =C:AD,
Cry1 =By, (14)
D‘L'+1 = C‘L’ \Y DT'

To express this system in algebraic form, we define:
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Zy =%i%y B (15)

The mapping x;: AT' - A,m is bijective, allowing us to recover B;from z using equation (22). Applying
equation (11), we can derive the structure matrices N; = Ny, for i =1, ...,m, such that:

Biry1 = Nizpi = 1,2, ..., m. (16)
Typically, each function g; depends on only a subset of variables. For instance:
Bry1 =C AD;.
Expressing this in matrix form:
Bri1 = Ng(C:D,. (17)

To align (17) with (16), we define an auxiliary matrix:

It follows that for logical variables U,V
E,UV =V,or E;Si;UV = U.

Thus, rewriting (17):

Biy1 = NyE,B,C.D; = NyE,z,.
Multiplying the equations in (16) gives:
Zrpq = N1z Nozp .. Ny z. (18)
To simplify (18), we use the following:
Let Qx = BB, ...By. Then:
QI% = Wy Q. (19)

where

k
y, = nlzk_,- ® [l ® Spp -1 (20)
j=1

We can show this by mathematical induction. For k = 1:
Qi = B = NyB,.
Since Sp; 1) = I, we have W; = N,. Assuming validity for k = r, we show for k =r + 1:

Qr2+1 =B1B; ... By41B1B; ... By 44
= B15[2,2r]B1 (B ---Br+1]2
=, ® 5[2,2r])B12 [B2 ---Br+1]2
=[(; ® 5[2,2’])Ns]B1[Bz ---Br+1]2-

Equation (18) can be rewritten as:
Zryy = Gz, (21)

where
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m

6= ] [[tm @ Wyw,]
j=2
By equation (19):
ZTZ = YmZz:
Thus,
Zey1 = NizyNyz; .. N,z;

= N, (In ® NZ)ZTZN3ZT - Nyzy
Nl (12" ® NZ)LPmZ‘L'NSZT NkZ'r

= Ni(I;n @ Np)Wi (I @ N3)Wyp, - (In ® Ny ) Wiz,
2.3 Equilibrium states and cycles

We begin by examining the derivation of logical variables {P;(t)} from y(t) = P;(t)P,(t) ... B,(t). Clearly,
y(t) € Q,n. The following has been readily established in (Cheng and Qi, 2010). Suppose y(t) = y{n. Define

Co: = 2™ —j, then P, (t) can be computed iteratively as follows:

_ k-1
Pr(®) = |5l (22)
Ck = Ck—l - Pk(t) . Zn_k,k = 1,2, e, n,

where |c| represents the greatest integer less than or equal to c¢. Considering the Boolean Network equation
(21), let M;, i=1,2,...,2™ represent the i-th column of the network transition matrix M. It follows
thatM; € Q,n.A state y, € Q,n is termed an equilibrium point of system (21)

l. If Myo = Yo-

Il. The sequence {yo, My,, ..., M¥y,} is a cycle of system (21) with period k, if M*y, =y,, and all
elements in {y,, My,, ..., M¥"1y,} are distinct.

Consider the Boolean network model described in equation (13). The state y{m serves as an equilibrium point

if and only if, within its algebraic representation (21), the diagonal component q;; of the network transition
matrix Q satisfies q;; = 1. Consequently, the total count of equilibrium states in system (13), denoted asT,
corresponds to the number of indices j where q;; = 1. Mathematically, this is expressed as:

T, = Trace(Q). (23)

Moreover, if q;; = 1, the corresponding column j in Q is termed a nonzero diagonal column.Furthermore,
the cyclic behavior of the Boolean network system (13), was examined in (Cheng and Qi, 2010). Define a
notation: For any integer r € Z,, a positive integer s € Z, is a valid divisor of rif s <randr/s € Z,. The
collection of all valid divisors ofr is denoted byD(r). For example, D(10) = {1,2,5} and D(15) = {1,3,5}.
Applying a reasoning similar to equation (23), the following result was derived.The number of cycles of length
s, denoted Cs, is computed recursively as:

IAEES WWW.iaees.org



130 Network Biology, 2025, 15(4): 123-149

Cl = TC

Trace(Q%) — rM
Cs — (Q ) ZTED(S) T‘Z <s<2m
S

(24)

This has been proven in Cheng and Qi (2010). Regarding the upper bound for s, note that x(t) can assume at
most 2™ distinct states, implying that the maximum possible cycle length is at most 2™ (see Cheng and Qi
(2010)). To identify these cycles, we check whether:

Trace(Q%) — Z rM, > 0. (25)
T€D(s)

If inequality (25) holds, then s is termed a significant period.Assuming s is a significant period, let gj;
denote the (j, j)-th entry of Q<. Define the sets:

Es={| CI}}- =1},s=12,..,2™,
and

E=k () B
T€D(S)

where Ef represents the complement of E,..Then it can be said that, let y, = y{m. Then the sequence

{¥0, QVo, .., Q5 1y,} forms a cycle of length s if and only ifj € F,.Hence, equation (24) and the above
statement, outlines an efficient method for determining cycles.

2.4 Permuation-inspired method

To rigorously define this transformation, Wang et al. (2023) introduce a bijective function g that encodes
Boolean network states as numerical identifiers. Let Q = {w,, ..., w,m} denote a set containing 2™unique
numerical labels. The function g:{0,1}"* — Q maps each Boolean state (y;,y,, ..., V) 10 a unique element
in Q. It is important to note that g is not uniquely determined; its formulation is contingent on the selection
of Q.For example:

If Q=1{0,1,..,2™ — 1}, one possible bijection is the standard binary-to-decimal encoding:
IO Y2 s Ym) =V 2T 4y 2T ety (26)
Alternatively, if Q = {1,2, ...,2™}, an alternative transformation may involve shifting the output by 1:
ILY2 e Ym) =y - 2™ 4y, - 2M2 by 4+ 1. (27)

These examples illustrate how g can be adapted to various indexing frameworks while preserving the
one-to-one correspondence between Boolean states and numerical values. The ability to redefine g highlights
the connection between algebraic structures and the representation of dynamical systems.

91 Y2r e Ym) = 2™ = (112D + 722772 + -+ ). (28)

Let h:{0,1}™ — {0,1}™ be a Boolean map, and let V,, ={ej}§'=n1 be the standard basis of R2"™. Let
R ={1,2,3,...,2™}, and define g:{0,1}™ — R as a bijection map. Define the map K:{0,1}™ — V,,, by

K(2) = €4(z), forz € {0,1}™.
Then the map h:V,, - V,, defined by

h=KohoK™!
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is isomorphic to h and can be expressed as
h(v) = Mv, forv € V,, (29)

where M = [h(e,), h(ey), ..., h(e;m)] (see Wang et. al (2023)).The above, indicates that instead of solving
the Boolean network z* = h(z), we can solve the linear system w* = M(w). The map K is an arbitrary
bijection from {0,1}™ to A,m since g is arbitrary. Thus, the theorem suggests that any bijection from {0,1}™
to A,m transforms a Boolean network system into a discrete linear dynamical system. When g is as given in
Equation (28), then equation (29) shows that the linear representation obtained matches that constructed using
the semi-tensor product method introduced by Cheng and Qi (2010) (see section 2.1 - 2.3). Hence, by
Equation (28), the equivalent linear representation of the Boolean system y* = h(y) is given by

+
z" = [ey, eg, g, €9, €3, €6, €6, €7]2,

which matches the result obtained through the semi-tensor product method in section 2.1-- 2.3.Also in (Wang
et. al, 2023), it was shown that, if y; € {0,1} and w; € A; be the vectors associated with y; by equation (12)
for 1 <i < m.Then

wy Xw, X ... XWw, = €<p(y) (30)

where @(y) = 2™ — (y, (2™ 1) + y,(2™2) + -+ y,,) = 2™ — Dec(y) . Let h:{0,1}™ - {0,1}™ be a
Boolean map and k:{0,1} — Pbe a bijection function as described above. We now define a new map
p: P — P thatis isomorphicto h as follows:

p=kohok™ 31
The map p can be represented by the following matrix:

P1 b2 = Pam ]

SO = p) p) - ppm) (32)

It is important to note that S(p) in Equation (32) serves as an alternate representation of the truth table.
However, S(p) provides a more compact form, making it easier to identify the Boolean states and their
corresponding subsequent states, as well as any underlying patterns. This streamlined representation aids in the
analytical study of Boolean networks, even those with an indeterminate number of nodes, this was further
illustrated in (Wang et. al, 2023) with provisional examples.

2.5 Perturbed diphtheria pathogenesis network

In the study by Ugbene and Utoyo (2024), a Boolean network model was proposed to encapsulate the
regulatory interactions among eight key genes implicated in diphtheria pathogenesis. This network, which
captures the genetic interplay underlying the pathogenesis of diphtheria, is modeled using Boolean transition
functions. To this end, boolean variables were assigned to each of the eight key genes. In the model, the
variable a,(t) represents the expression of the toxin gene (Tox), a,(t) denotes the repressor gene (Rep),
as(t) corresponds to the inflammatory mediator INF1, a,(t) to INF2, as(t) to the Toll-like receptor
(TLR), aq(t) to the transcription factor AP1, a,(t) to interleukin-6 (IL6), and ag(t) to tumor necrosis
factor (TNF). Here we modify, adding a gain of function to suggest the fact that TNF down-regulates TLR
expression and activity, while 1L-6 up-regulates TLR expression and enhances its responsiveness (Tamandl et
al., 2003; Smolinska et al., 2011; Chang et al., 2014) and also define the rule that Rep is regulated by the
inhibitory of Tox or the expression of either INF1 or INF2. Each gene is represented by a Boolean variablea;
(for i =1, ...,8), which can take the value 0 (inactive) or 1 (active). The evolution of the network is governed
by discrete-time updates defined by the following Boolean equations:
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a;(t+1) =-ay(t),

a(t+1) =-a(0)V(az(t)Vau(t)),

az;(t+1) =as(t)Vae(t),

a,(t+1) =as(t)Vas(t)Va,(t), (33)
as(t+1) =-ag(t)Aa,(t),

ag(t+1) =ag(t)Vva,(t),

a;(t+1) =a () Vas(d),

ag(t+1) =a(t)Vag(t).

In these equations, the symbol —a; denotes the logical NOT of a;,A denotes the logical AND, and v
denotes the logical OR.

3 Results

3.1 Conversion to a linear dynamical system via the semi-tensor product method

The semi-tensor product (STP) method is an effective algebraic technique that transforms Boolean networks
into linear dynamical systems, thereby enabling the application of linear system theory to analyze network
dynamics. Within this framework, each Boolean variable x;is represented by a two-dimensional vector.
Specifically, the Boolean value 1(true) is represented by the vector

yi= [(1)]

and the value 0 (false) is represented by

=1}

Thus, the state of each gene can be expressed in vector form.The overall state of the eight-gene network is then
given by the semi-tensor (or Kronecker) product of the individual gene state vectors:

8
A=a1D<a2D<~~~D<a8€R2,

Wherexdenotes the semi-tensor product and A is a 256 x 1 vector that encapsulates the entire state of the
network.Each Boolean function f;:{0,1}® — {0,1} corresponding to the update rule of genex; is then

converted into an algebraic form. More precisely, there exists a structure matrix N; € R2*2°) such that the
update rule can be written as

a;— = NiA,

where the output x;" is represented in vector form; that is, it is y3 if f;(X) =1 and yZ if f;(X) = 0. The
structure matrix M; is constructed by first enumerating all (28)possible states of the network and then
mapping the Boolean output of f;for each state to its corresponding canonical vector.To illustrate, consider the
Boolean update for gene a;:

af = -a,.

For each of the 256 possible input states X, the value of —a, is computed. If the output is 1, the
corresponding column of N, is set to y3; if the output is 0, it is set toy2z. A similar procedure is applied to
obtain the structure matrices N,, Ns,...,Ng for the other genes.Once the structure matrices for all eight
genes have been determined, the overall dynamics of the network can be encapsulated in a single linear
equation. By combining the individual gene update equations, we can express the complete state transition of
the network in the compact form:
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A(t + 1) = LA(Y),

where L € R2°2%js the global transition matrix of the network. The matrix Lis constructed by appropriately
integrating the individual structure matrices M;and reflects the one-step evolution of the network state.The
construction of L involves defining an indexing function h:{0,1}® — {1,2,...,256} that assigns a unique
integer to each Boolean state. In this way, the jth column of \( L \) corresponds to the state into which the
network transitions from the jth state (as ordered by h). Although the explicit form of L is generally too
cumbersome to present in full due to its size, its construction is systematic and follows directly from the STP
method. Each entry in L is determined by the outputs of the structure matrices, Ny, ..., Ng corresponding to
the appropriate Boolean functions evaluated at each state. Mathematically, writting the equation (33) in a
structured matrix form;

a(t+1) = Npnay(t),

ax(t+1) = Na((Nma1 (1)) (Ngaz(t)as(t))),
az(t+1) = Naas(t)as(t),

as(t +1) = Na(as(t)(Naas(t)a; (1)),

as(t+1) = No(Npas(t)as(0)), (34)
ag(t +1) = Ngag(t)a,(t),
a;(t+1) = Nga,(t)as(t),
ag(t+1) = Nza(t)ae(t).
So that,
a(t+1) = Npa,(t),
ax(t+1) = Ng(Np(I; ® Ng)a,(t)az(t)as(t)),
az(t+1) = Ngas(t)aes(t),
as(t+1) = Ng(I; ® Ng)as(t)ae(t)a, (), (35)

as(t+1) = N.(Npag(t)a;(1)),
ag(t+1) = Ngag(t)a,(¢),
a;(t+1) = Nga,(t)as(d),
ag(t+1) = Nza,(t)ae(t).

Setting A(t) = a1 (t)a,(t)as(t)as(t)as(t)ags(t)a,(t)ag(t), we can calculate L as

At +1) = Np(l; @ Ng(Nin (I @ Ng))) U+ @ Na) (6 @ Na(I; @ Ng)) (7 @ NeNiy)

(I2 @ (I8 ® (I8 ® Ng)))Spz)(I25 @ Sp2)) U2+ @ Ng)(Iys @ No) (127 @ Spz))

(27 ® Ng)(I3z @ Ny)(I7 @ S U7 ® Ng)(I38 ® Ny) (I8 ® Si21) (36)
Iy ® 5[2,27])(12 Q@ Ns)(Izs ® 5[2,25])(122 @ Ns)(I2 ® 5[2,22])

(Is @ Ns)ay (t)az(t)az(t)as(t)as(t)as(t)as (t)ag(t)

Hence

L = Ny (ly ® Na(Npm (L, ® N))) (U ® Ng) (U6 ® Na(ly ® N))(Iy7 ® NNy

(s ® (I3 ® (I3 ® Ny))Siz) (s ® Siz) U+ ® Ne)(Ips ® No)(Iyr @ Spzp)

(L ® N) (I ® Ne)(Iy7 ® Siz)(Iy7 ® Ne)(Ips ® Ne)(Is ® Siz) (U7 ® Sz7p) B7)
(I ® Ny)(Is ® 5[2,25])(122 @ Ns)(I52 ® 5[2,22])(125 & Ny)

Then this can be solved as
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L =y,56[419431936819667195419631956819667195
1620615205802087920716208152078020879207
144206143205208208207207144208143207208208207
207144206143205208208207207144208143207208208207
20760250592491242521232516025259251124252123
25164254632531282561272556425663255128256127
255192254191253256256255255192256191255256256255
255192254191253256256255255192256191255256256255
255362263522510022899227362283522710022899
22748238472371122401112394824047239112240111
239176236175237240240239239176240175239240240239
239176236175237240240239239176240175239240240239
23944234432331082361072354423643235108236107
23548238472371122401112394824047239112240111
239176238175237240240239239176240175239240240239
239176238175237240240239239176240175239240240239239]

When we mapped out the system’s behavior using semi-tensor product (STP) analysis, what stood out was
how predictable it all became. No chaos, no endless loops, just two clear endpoints it always settles into. The
first,

y232 (corresponding to state 01110111) with a large basin of 254 states,

acts like a giant magnet. Almost every starting point, 254 out of 256!, gets pulled here. Imagine a bustling city:
immune sensors like TLR are on high alert, cytokines like IL6 and TNF are shouting orders, and interferon
signals (INF1/INF2) are flashing warnings. But here’s the kicker, the toxin gene stays silent. It’s like the
body’s defense team is working overtime, but without friendly fire. Then there’s

¥3 (corresponding to state 01000000) with a small basin of 2 states,

the quiet cousin. Only two paths lead here, and it’s a ghost town in comparison. Just INF1 flickering faintly,
like a lone nightlight, while everything else, TLR, AP1, IL6, TNF, shuts down. This attractor feels fragile, like
balancing a pencil on its tip. Breathe too hard, and it topples back into Attractor 1. What’s cool, and a bit
surprising, is that the system doesn’t cycle. No back-and-forth, no pendulum swings. It’s all-or-nothing: either
full-throttle immune mode or near-silence. This “bistability” tells us the system’s wired for extremes, not
middle grounds.

Using STP here wasn’t just math gymnastics. It’s like reverse-engineering the system’s rulebook. We saw
why Attractor 1 dominates (it’s got all the reinforcement loops, think IL6 propping up TLR, which feeds back
into IL6) and why Attractor 2 is a fluke (no backup, no safety nets). For folks designing treatments, this is
huge. Want to keep the body in defense mode? Boost those feedback loops. Need to calm an overzealous
response? Maybe tweak INF1 to nudge things toward quiet, but good luck, since it’s like herding cats.
Bottom line? Tools like STP turn abstract networks into something we can actually work with. They’re not just
for theorists, they help us see where to push, pull, or patch things up. And in a world where pathogens play
dirty, that’s a pretty solid advantage.

3.2 Conversion via the permutation method

Here, we use the permutation-based technique to examine Boolean maps over finite state spaces, offering a
clear window into the system's dynamics. We start with a Boolean function

p:{0,1}° - {0,1}%,

and we work with the canonical basis of R2°, denoted by
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V8 = {61, €y, ...,328}.

To uniquely identify each 8-bit vector, we introduce a bijection

g:{0,13¥ > {1,2,...,28},

which assigns a distinct index to every element of {0,1}8. Using this bijection, we define a mapping

where €4, denotes the corresponding standard basis vector in V.

K(z) = €4 forz € {0,1}%,

Table 1 An isomorphic mapping of the state transitions in the Boolean network (All Possible State Transitions).

p (S| p |S® | p |S®|p |S®| P [S®| p |S®| p |SE®| p |SP
€1 €4 €z €194 €3 €3 €4 €193 €s €68 €6 €196 €7 €67 €g €195
€9 €4 €10 €196 €11 €3 €12 | €195 €13 €68 €14 €196 €15 €67 €16 | €195
€17 €16 €18 €206 €19 €15 €20 | €205 | €21 €s0 €22 €208 €23 €79 €24 | €207
€25 €16 €26 €208 €27 €15 €28 | €207 €29 €30 €30 €208 €31 €79 €32 | €207
€33 | €144 | €34 €206 €35 €143 | €36 | €205 €37 €208 €38 €208 €39 | €207 | €40 | €207
€41 | €144 | €42 €208 €43 €143 | €44 | €207 | €45 €208 €46 €208 €47 | €207 | €a8 | €207
€49 | €144 | €50 €206 €51 €143 | €52 | €205 | €53 €208 €54 €208 €55 | €207 | €56 | €207
€57 | €144 | €s8 €208 €59 €143 | €60 | €207 | €61 €208 €62 €208 €63 €207 | €64 | €207
€65 €60 €66 €250 €67 €59 €68 | €249 | €eo €124 €70 €252 €71 | €123 | €72 | €251
€73 €60 €74 €252 €75 €59 €76 | €251 €77 €124 €78 €252 €79 €123 | €go | €251
€g1 €64 €g2 €254 €g3 €63 €84 | €253 €gs5 €128 €g6 €256 €g7 | €127 | €gg | €255
€89 €64 €90 €256 €91 €63 €92 | €255 €93 €128 €94 €256 €95 | €127 | €96 | €255
€97 | €192 | €og €254 €99 €191 | €100 | €253 | €101 | €256 | €102 €256 | €103 | €255 | €104 | €255
€105 | €192 | €106 | €256 €107 | €191 | €108 | €255 | €109 | €256 | €110 €256 €111 | €255 | €112 | €255
€113 | €192 | €114 | €254 €115 | €191 | €116 | €253 | €117 | €256 | €118 | €256 | €119 | €255 | €120 | €255
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€121 | €192 | €122 | €256 €123 | €191 | €124 | €255 | €125 | €256 | €126 €256 €127 | €255 | €128 | €255

€129 | €36 | €130 | €226 €131 €35 €132 | €225 | €133 | €100 | €134 €228 €135 €99 | €136 | €227

€137 | €36 | €138 | €228 €139 €35 | €140 | €227 | €141 | €100 | €142 €228 €143 €99 | €144 | €227

€145 | €a8 | €146 | €238 €147 €47 | €148 | €237 | €149 | €112 | €150 €240 €151 | €111 | €152 | €239

€153 | €48 €154 | €240 €155 €47 €156 | €239 | €157 | €112 €158 €240 €159 | €111 | €160 | €239

€161 | €176 | €162 | €236 €163 | €175 | €164 | €237 | €165 | €240 | €166 €240 €167 | €239 | €168 | €239

€169 | €176 | €170 | €240 €171 | €175 | €172 | €239 | €173 | €240 | €174 €240 €175 | €239 | €176 | €239

€177 | €176 | €178 | €236 €179 | €175 | €180 | €237 | €181 | €240 | €182 €240 €183 | €239 | €184 | €239

€185 | €176 | €186 | €240 €187 | €175 | €188 | €239 | €189 | €240 | €190 €240 €191 | €239 | €192 | €239

€193 | €24 | €194 | €234 €195 €43 €196 | €233 | €197 | €108 | €198 €236 €199 | €107 | €200 | €235

€201 | €a4 | €202 | €236 €203 €43 €204 | €235 | €205 | €108 | €206 €236 | €207 | €107 | €208 | €235

€209 | €a8 | €210 | €238 €211 €47 | €212 | €237 | €213 | €112 | €214 | €240 | €215 | €111 | €216 | €239

€217 | €ag | €218 | €240 €219 €47 | €220 | €239 | €221 | €112 | €222 €240 | €223 | €111 | €224 | €239

€225 | €176 | €226 | €238 €227 | €175 | €228 | €237 | €229 | €240 | €230 €240 €231 | €239 | €232 | €239

€233 | €176 | €234 | €240 €235 | €175 | €236 | €239 | €237 | €240 | €238 €240 €239 | €239 | €240 | €239

€241 | €176 | €242 | €238 €243 | €175 | €244 | €237 | €245 | €240 | €246 €240 | €247 | €239 | €248 | €239

€249 | €176 | €250 | €240 €251 | €175 | €252 | €239 | €253 | €240 | €254 €240 €255 | €239 | €256 | €239

Table 2 Essential state transitions.

p |[S®| p | S p |[S® | p |S®| p |S®)| p S(p) p |S®]| p | SP

€3 €3 €4 €193 €15 €67 €16 | €195 €35 €143 €36 €205 €43 | €143 | €44 | €207
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€47 | €207 | €48 €207 €59 €143 | €50 | €207 | €63 €207 €64 €207 €67 €59 €68 | €249

€79 | €123 | €30 €251 €99 €191 | €100 | €253 | €107 | €191 €108 €255 €111 | €255 | €112 | €255

€123 | €191 | €124 | €255 €127 | €255 | €128 | €255 | €143 €99 €144 €227 €175 | €239 | €176 | €239

€191 | €239 | €192 | €239 €193 €44 | €194 | €234 | €195 €43 €196 €233 €205 | €108 | €206 | €236

€207 | €107 | €208 | €235 €225 | €176 | €226 | €238 | €227 | €175 €228 €237 €233 | €176 | €234 | €240

€235 | €175 | €236 | €239 €237 | €240 | €238 | €240 | €239 | €239 | €240 €239 €249 | €176 | €250 | €240

€251 | €175 | €252 | €239 €253 | €240 | €254 | €240 | €255 | €239 | €256 €239

Table 3 Paths to stability.

p |S®| p | S® p |[S@® | p |S®| p |S®| p | SO p |S®]| p | S®

€3 €3 €43 €143 €44 €207 | €59 | €143 €67 €59 €99 €191 €107 | €191 | €108 | €255

€123 | €191 | €143 €99 €175 | €239 | €176 | €239 | €101 | €239 | €193 €44 €195 | €43 | €205 | €108

€207 | €107 | €227 | €175 €233 | €176 | €234 | €240 | €235 | €175 | €236 €239 | €237 | €240 | €238 | €240

€239 | €239 | €240 | €239 €249 | €176 | €251 | €175 | €253 | €240 | €255 €239

Table 4 Roadmap to attractors.

p |S@®| p |S®| p [S®| p |S®| p |S® | p | SO p |[S@®| p |S®

€3 €3 €43 | €143 | €24 | €207 | €59 | €143 €99 €191 | €107 | €191 €108 | €255 | €143 €99

€175 | €239 | €176 | €239 | €191 | €239 | €207 | €107 | €239 | €239 | €240 | €239 €255 | €239

Table 5 Limit sets.

p|S® | p | SO p [S®| p |S®| p |S® | p | SP p |S®]| p |Sk®

€3 | €3 €99 €191 €107 | €191 | €143 €99 €191 | €239 | €207 | €107 €239 | €239 | €255 | €239
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Next, we transform the original function p by considering
S(p)=KopoK™1

This re-expression of p in the space Vg preserves its dynamic behavior, but now in a linear algebraic form. In
fact, we can write

S(p) = Mp, forv € Vg,
where the matrixM is constructed as
M = [S(ey),S(ez), ..., S(eze)]. (38)

As noted in Wang et al. (2023), this approach offers a straightforward linear representation of Boolean
dynamics, making it easier to analyze state transitions. A particularly useful aspect of this method is that it
enables us to remove nonessential states specifically, the transient states and those with no predecessors (often
referred to as Garden-of-Eden states). For example, while our complete state transition (see Table 1) includes
every state, Table 2, presents the system after these Garden-of-Eden states have been eliminated. Moreover,
Tables 3 and 4 detail both the transient states and those that eventually contribute to the system's long-term
behavior, with Table 5, isolating the final limit set.By filtering out these extraneous states, we gain a much
clearer understanding of how the system ultimately settles into its attractors and the stability of its dynamics.
This refined perspective not only streamlines our analysis but also enhances our insight into the structural
properties of Boolean networks. The implications of these findings extend to various fields where
understanding complex, discrete dynamic systems is essential.

4 Discussion

The findings from previous section has revealed profound insights into the regulatory logic of a Boolean
network modeling diphtheria pathogenesis, where genes are encoded in the order Tox (toxin production), Rep
(toxin repressor), INF1/INF2 (interferon signaling), TLR (Toll-like receptor), AP1 (transcription factor), 1L6
(interleukin-6), and TNF (tumor necrosis factor). By redefining the regulatory rules governing Rep, such that
its activation is controlled either by the inhibition of Tox or the expression of INF1/INF2, the system was
shown to converge exclusively to pathogen-free states, where toxin production is permanently silenced. This
critical modification not only eliminated cycles in the network but also ensured that all transient states
eventually funneled into stable attractors devoid of pathogenic activity. The absence of cycles underscores the
system’s evolutionary design to prioritize stability and avoid oscillatory behaviors, which could otherwise lead
to unpredictable or harmful immune responses. Biologically, this reflects a fail-safe mechanism where the
host’s immune system is wired to suppress toxin production aggressively. The dual regulation of Rep,
triggered either by direct inhibition of Tox or by interferon signaling (INF1/INF2), mimics real-world immune
strategies where redundancy ensures robustness. For instance, even if Tox evades direct repression (e.g.,
through mutations), interferon signaling acts as a backup to activate Rep, ensuring toxin suppression. This
redundancy aligns with the evolutionary arms race between pathogens and hosts, where layered defenses are
critical for survival. The convergence to non-pathogenic states suggests that the network is intrinsically biased
toward host protection, prioritizing toxin silencing over other outcomes. Furthermore, we had explored the role
of TLR, a key immune sensor, by analyzing its overexpression and suppression. Overexpression of TLR,
simulating hyperactive immune sensing—rtesulted in a single attractor (01111111) with a basin of 128 states,
exactly half the size of the original basin observed under normal conditions. This attractor represents a
hyper-inflammatory state where TLR, INF1/INF2, IL6, and TNF are fully active, while Rep remains inactive
(Tox = 0). Paradoxically, despite Rep being off, toxin production is absent here, likely due to the
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overwhelming immune activity indirectly suppressing Tox through other pathways. The halved basin size
indicates reduced robustness, implying that hyperactive immunity destabilizes the system, making it more
sensitive to perturbations. Conversely, suppressing TLR yielded the same attractors as the modified rules in
earlier analyses, but with basins of identical size to the overexpression scenario. This symmetry suggests that
TLR activity, whether excessive or absent, constrains the system’s flexibility, forcing it into a narrower range
of stable states.

These results have critical implications for understanding immune-pathogen interactions. The network’s
preference for non-pathogenic states, even under extreme conditions like TLR overexpression, highlights the
prioritization of host survival. The system’s architecture ensures that toxin production is suppressed unless
multiple safeguards fail simultaneously. For example, the requirement for both INF1/INF2 and Rep
inactivation to activate Tox creates a high threshold for pathogenicity, reducing the likelihood of accidental or
transient toxin release. This aligns with biological systems where critical virulence factors are tightly regulated
to avoid unnecessary host damage, which could otherwise compromise transmission or invite immune
retaliation. The absence of cycles in the modified network further emphasizes its stability. In biological terms,
cycles could represent harmful oscillations, such as recurrent inflammation or periodic toxin production, which
would destabilize the host-pathogen equilibrium. The elimination of such behavior suggests that the network is
optimized for monotonic convergence, once the system commits to a trajectory (e.g., immune activation or
toxin suppression), it does not reverse course. This is analogous to “point-of-no-return” mechanisms in
apoptosis or cell differentiation, where transitions are irreversible to ensure decisive outcomes. Practically,
these findings offer a blueprint for therapeutic interventions. For instance, drugs that mimic INF1/INF2
signaling could reinforce Rep activation, ensuring toxin suppression even in strains where Tox mutations
evade direct repression. Similarly, modulating TLR activity, either enhancing or suppressing it, could help
calibrate immune responses. The reduced basin size under TLR overexpression warns against therapies that
hyperstimulate immune sensors, as this could shrink the system’s resilience to perturbations. Conversely, TLR
suppression might be useful in curbing excessive inflammation without compromising toxin control, given that
the core attractors remain unchanged. This also raises questions about evolutionary trade-offs. The network’s
robustness against toxin production likely comes at a cost, such as energetic demands from sustained immune
activity or vulnerability to pathogens that exploit interferon pathways. Future work could explore how these
trade-offs shape pathogen evolution, for example, whether diphtheria evolves mutations to disrupt
INF1/INF2-mediated Rep activation or to decouple TLR activity from downstream cytokine production. In
broader terms, this work exemplifies how Boolean modeling can unravel the logic of biological networks. By
simplifying complex interactions into binary states, the model distills essential regulatory principles,
redundancy, stability, and hierarchical control, that govern real-world systems. These principles are not unique
to diphtheria; they resonate across immune networks, synthetic biology, and even ecological systems where
stability and redundancy determine resilience. The methodology, particularly the permutation-based
elimination of non-essential states, could be adapted to study other pathogens or cellular processes, offering a
generalizable scheme for dissecting complexity.

Ultimately, the study underscores a fundamental truth: biological systems are not just collections of
components but orchestrated networks where structure dictates function. The precise arrangement of feedback
loops, redundancy, and fail-safes in this diphtheria model reveals how evolution sculpts networks to balance
aggression and restraint, ensuring survival in a chaotic world. For researchers, this means that tweaking
individual nodes (e.g., Rep or TLR) can have ripple effects across the entire system, demanding holistic
approaches to intervention. For clinicians, it reinforces the importance of understanding pathogen networks as
dynamic systems, not static targets, a perspective that could transform how we design treatments for infectious
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diseases.

5 Conclusion

The findings from this study provide a robust foundation for understanding and controlling the diphtheria
pathogenesis network. By demonstrating that redefining the regulatory logic of the Rep gene, linking its
activation to either the inhibition of Tox or the expression of INF1/INF2, ensures convergence to
pathogen-free states, we highlight a critical mechanism for silencing toxin production. This regulatory
redundancy, combined with the system’s cycle-free architecture, underscores its evolutionary optimization for
stability and host protection. Furthermore, perturbations such as TLR overexpression or suppression reveal
how immune hyperactivity or passivity constrains the system’s flexibility, narrowing its attractor landscape.
These insights lay the groundwork for therapeutic strategies that exploit the network’s inherent logic to enforce
toxin suppression or modulate immune responses.To implement these insights, future studies can leverage
linear algebraic representations of Boolean dynamics for targeted control design. A Boolean control network
can be conceptualized as a set of interconnected logical rules governing gene states, where inputs (e.g., drugs,
cytokines) modulate transitions between states. For instance, consider a system with genes Ay, 4, ..., A,
control inputs g, uy, ..., U, (€.9., therapeutic agents), and outputs y,,y,,..,y, (e.9., biomarkers). The
system’s evolution can be described as:

{Ai(t +1) =fi(4,(t), ... A (O), u (), oo U (1)), i =1, ...,m
yj(®) = hj(A1 (), ..., An(8)),j = 1,...,0
Here, f; and h; are logical functions encoding regulatory interactions. By combining state variables,

controls, and outputs into composite vectors, x(t)(states), u(t) (controls), and y(t) (outputs), the system
can be translated into a linear algebraic form:

(39)

{x(t +1) =L u(t) xx(t)
y(t) = H - x(¢)

where L and H are structured matrices capturing the system’s logic. Crucially, this linearization enables the
use of computational tools like the semi-tensor product (STP) to calculate control-dependent transitions and
design interventions. Unlike brute-force methods, STP efficiently computes the time-varying transition matrix
L(t) = L, x x(t), which maps current states to future states under specific controls. This approach not only
identifies viable control sequences but also clarifies input-output relationships, making it possible to pinpoint
therapeutic targets that steer the network toward desired outcomes (e.g., toxin suppression). By bridging
Boolean modeling with control theory, this approach transforms abstract network dynamics into actionable
strategies. It offers a blueprint for precision medicine in infectious diseases, where interventions are designed
not just to inhibit pathogens but to reprogram host-pathogen interactions at a systems level. Future work could
extend this methodology to other virulence networks, opening avenues for universally applicable control
paradigms in infectious disease management. This method reframes therapeutic design as a network control
problem, where diseases are treated by steering biochemical systems toward health-associated attractors.
Unlike conventional "one-drug-one-target” approaches, it embraces the complexity of biological networks,
offering a path to therapies that are as adaptive and layered as the systems they aim to control. For diphtheria,
this could mean combinatorial regimens that silence toxins, recalibrate immunity, and preempt resistance, all
by leveraging the system’s own logic against it. In essence, we move from fighting pathogens to orchestrating
a biochemical symphony where host protection is the final, inevitable note.

(40)
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Table 6 boolean rules for the network.

Node Boolean Transition Rules
Tox NOT Rep

Rep NOT Tox OR (INF1 OR INF2)
INF1 TLR OR AP1

INF2 TLR OR AP1OR IL6
TLR NOT TNF AND IL6
AP1 TNF OR IL6

IL6 Tox OR INF1

TNF Tox OR AP1

Table 7 Attractors and their basins.
State Next State Attr. basin #ftrans. to attr

€; = 00000000

€, = 11000000

€, = 10000000

€104 = 10000011

€3 = 01000000

€3 = 01000000

€, = 11000000

€193 = 00000011

€5 = 00100000

€6g = 11000010

€¢ = 10100000

€196 = 11000011

€, =01100000

€67 = 01000010

€g = 11100000

€195 = 01000011

€9 = 00010000

€, = 11000000

€10 = 10010000

€106 = 11000011

€11 = 01010000

€3 = 01000000

€12 = 11010000

€105 = 01000011

€13 = 00110000

€6 = 11000010

€14 = 10110000

€196 = 11000011

€15 = 01110000

€67 = 01000010

€16 = 11110000

€195 = 01000011

€17 = 00001000

€16 = 11110000

€15 = 10001000

€206 = 10110011

€10 = 01001000

€15 = 01110000

€20 = 11001000

€205 — 00110011

€21 = 00101000

€g0 = 11110010

€5, = 10101000

€203 = 11110011

€3 = 01101000

€79 = 01110010

€54 = 11101000

€207 = 01110011

€25 = 00011000

€16 = 11110000

€26 = 10011000

€208 = 11110011

€27 = 01011000

€15 = 01110000

€25 = 11011000

€207 = 01110011

RlRr (R R R R R R R R R R R|R[R[R[R|N|R[R[R[R[R[R|R[|N|RP]|~

BN A N A A A A A N W IN [V OVRr ANV ROV O A

IAEES

WWW.iaees.org




144 Network Biology, 2025, 15(4): 123-149
€59 = 00111000 €go = 11110010 1 4
€30 = 10111000 €508 = 11110011 1 4
€3, = 01111000 €,9 = 01110010 1 4
€3, = 11111000 €07 = 01110011 1 4
€33 = 00000100 €144 = 11110001 1 4
€34 = 10000100 €306 = 10110011 1 3
€35 = 01000100 €143 = 01110001 1 4
€36 = 11000100 €505 = 00110011 1 4
€3, = 00100100 €308 = 11110011 1 4
€35 = 10100100 €308 = 11110011 1 4
€39 = 01100100 €507 = 01110011 1 4
€40 = 11100100 €507 = 01110011 1 4
€41 = 00010100 €144 = 11110001 1 4
€42 = 10010100 €508 = 11110011 1 4
€43 = 01010100 €143 = 01110001 1 4
€44 = 11010100 €07 = 01110011 1 4
€45 = 00110100 €08 = 11110011 1 4
€46 = 10110100 €308 = 11110011 1 4
€47 = 01110100 €307 = 01110011 1 4
€4 = 11110100 €307 = 01110011 1 4
€49 = 00001100 €144 = 11110001 1 4
€50 = 10001100 €206 = 10110011 1 3
€5, = 01001100 €143 = 01110001 1 4
€5, = 11001100 €505 = 00110011 1 4
€53 = 00101100 €508 = 11110011 1 4
€54 = 10101100 €508 = 11110011 1 4
€s5 = 01101100 €07 = 01110011 1 4
€56 = 11101100 €07 = 01110011 1 4
€57 = 00011100 €144 = 11110001 1 4
€sg = 10011100 €308 = 11110011 1 4
€59 = 01011100 €143 = 01110001 1 4
€60 = 11011100 €307 = 01110011 1 4
€61 = 00111100 €308 = 11110011 1 4
€62 = 10111100 €308 = 11110011 1 4
€63 = 01111100 €507 = 01110011 1 4
€64 = 11111100 €507 = 01110011 1 4
€65 = 00000010 €60 = 11011100 1 5
€66 = 10000010 €350 = 10011111 1 3
€57 = 01000010 €59 = 01011100 1 5
€s5 = 11000010 €240 = 00011111 1 3
€69 = 00100010 €104 = 11011110 1 3
€70 = 10100010 €35, = 11011111 1 2
€, = 01100010 €123 = 01011110 1 3
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€7, = 11100010

€251 = 01011111

€75 = 00010010

€60 = 11011100

€74 = 10010010

€25, = 11011111

€75 = 01010010

€50 = 01011100

€76 = 11010010

€25, = 01011111

€77 = 00110010

€124 = 11011110

€75 = 10110010

€252 = 11011111

€79 = 01110010

€123 = 01011110

€50 = 11110010

€25, = 01011111

€g; = 00001010

€64 = 11111100

€g, = 10001010

€254 = 10111111

€g3 = 01001010

€63 = 01111100

€5 = 11001010

€253 = 00111111

€gs = 00101010

€128 = 11111110

€gs = 10101010

€256 = 11111111

€g7 = 01101010

€127 = 01111110

€gs = 11101010

€255 = 01111111

€59 = 00011010

€6a = 11111100

€00 = 10011010

€256 = 11111111

€9, = 01011010

€63 = 01111100

€9 = 11011010

€255 = 01111111

€93 = 00111010

€105 = 11111110

€94 = 10111010

€256 = 11111111

€95 = 01111010

€127 = 01111110

€96 = 11111010

€255 = 01111111

€97 = 00000110

€192 = 11111101

€95 = 10000110

€254 = 10111111

€99 = 01000110

€191 = 01111101

€100 = 11000110

€253 = 00111111

€101 = 00100110

€256 = 11111111

€102 = 10100110

€256 = 11111111

€103 = 01100110

€255 = 01111111

€104 = 11100110

€255 = 01111111

€105 = 00010110

€19, = 11111101

€106 = 10010110

€256 = 11111111

€107 = 01010110

€191 = 01111101

€108 = 11010110

€255 = 01111111

€109 = 00110110

€256 = 11111111

€110 = 10110110

€256 = 11111111

€111 = 01110110

€255 = 01111111

€112 = 11110110

€255 = 01111111

€113 = 00001110

€192 = 11111101

€114 = 10001110

€254 = 10111111
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€115 = 01001110 €197 = 01111101 1 2
€116 = 11001110 €553 = 00111111 1 3
€117, = 00101110 €56 = 11111111 1 2
€115 = 10101110 €56 = 11111111 1 2
€119 = 01101110 €55 = 01111111 1 2
€120 = 11101110 €55 = 01111111 1 2
€127 = 00011110 €102 = 11111101 1 2
€122 = 10011110 €56 = 11111111 1 2
€123 = 01011110 €197 = 01111101 1 2
€104 = 11011110 €355 = 01111111 1 2
€125 = 00111110 €356 = 11111111 1 2
€126 = 10111110 €356 = 11111111 1 2
€127 = 01111110 €555 = 01111111 1 2
€12 = 11111110 €555 = 01111111 1 2
€129 = 00000001 €36 = 11000100 1 5
€130 = 10000001 €206 = 10000111 1 4
€131 = 01000001 €35 = 01000100 1 5
€13, = 11000001 €595 = 00000111 1 3
€133 = 00100001 €100 = 11000110 1 4
€134 = 10100001 €508 = 11000111 1 4
€135 = 01100001 €99 = 01000110 1 3
€136 = 11100001 €597 = 01000111 1 3
€137 = 00010001 €36 = 11000100 1 5
€135 = 10010001 €52 = 11000111 1 4
€139 = 01010001 €35 = 01000100 1 5
€140 = 11010001 €527 = 01000111 1 3
€141 = 00110001 €100 = 11000110 1 4
€142 = 10110001 €08 = 11000111 1 4
€143 = 01110001 €99 = 01000110 1 3
€144 = 11110001 €527 = 01000111 1 3
€145 = 00001001 €48 = 11110100 1 5
€146 = 10001001 €338 = 10110111 1 3
€147 = 01001001 €47 = 01110100 1 5
€145 = 11001001 €537 = 00110111 1 3
€140 = 00101001 €11, = 11110110 1 3
€150 = 10101001 €340 = 11110111 1 2
€151 = 01101001 €111 = 01110110 1 3
€15, = 11101001 €339 = 01110111 1 1
€153 = 00011001 €45 = 11110100 1 5
€154 = 10011001 €240 = 11110111 1 2
€155 = 01011001 €47 = 01110100 1 5
€156 = 11011001 €330 = 01110111 1 1
€157 = 00111001 €112 = 11110110 1 3
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€155 = 10111001

€240 = 11110111

€159 = 01111001

€111 = 01110110

€160 = 11111001

€230 = 01110111

€161 = 00000101

€176 = 11110101

€162 = 10000101

€236 = 10110111

€163 = 01000101

€175 = 01110101

€164 = 11000101

€237 = 00110111

€165 = 00100101

€240 = 11110111

€166 = 10100101

€240 = 11110111

€167 = 01100101

€230 = 01110111

€168 = 11100101

€230 = 01110111

€169 = 00010101

€176 = 11110101

€170 = 10010101

€240 = 11110111

€171 = 01010101

€175 = 01110101

€17, = 11010101

€230 = 01110111

€173 = 00110101

€240 = 11110111

€174 = 10110101

€240 = 11110111

€175 = 01110101

€230 = 01110111

€176 = 11110101

€230 = 01110111

€177 = 00001101

€176 = 11110101

€175 = 10001101

€236 = 10110111

€170 = 01001101

€175 = 01110101

€180 = 11001101

€237 = 00110111

€191 = 00101101

€240 = 11110111

€182 = 10101101

€240 = 11110111

€183 = 01101101

€239 = 01110111

€184 = 11101101

€230 = 01110111

€195 = 00011101

€176 = 11110101

€186 = 10011101

€240 = 11110111

€1g7 = 01011101

€175 = 01110101

€188 = 11011101

€230 = 01110111

€180 = 00111101

€240 = 11110111

€190 = 10111101

€240 = 11110111

€197 = 01111101

€230 = 01110111

€197 = 11111101

€230 = 01110111

€195 = 00000011

€44 = 11010100

€194 = 10000011

€234 = 10010111

€195 = 01000011

€43 = 01010100

€106 = 11000011

€233 = 00010111

€197 = 00100011

€105 = 11010110

€105 = 10100011

€236 = 11010111

€109 = 01100011

€107 = 01010110

€200 = 11100011

€235 = 01010111
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€501 = 00010011 €44 = 11010100 1 5
€502 = 10010011 €336 = 11010111 1 2
€503 = 01010011 €43 = 01010100 1 5
€504 = 11010011 €535 = 01010111 1 3
€505 = 00110011 €108 = 11010110 1 3
€206 = 10110011 €336 = 11010111 1 2
€207 = 01110011 €107 = 01010110 1 3
€208 = 11110011 €335 = 01010111 1 3
€200 = 00001011 €48 = 11110100 1 5
€310 = 10001011 €335 = 10110111 1 3
€511 = 01001011 €47 = 01110100 1 5
€51, = 11001011 €537 = 00110111 1 3
€513 = 00101011 €112 = 11110110 1 3
€514 = 10101011 €340 = 11110111 1 2
€15 = 01101011 €111 = 01110110 1 3
€316 = 11101011 €39 = 01110111 1 1
€17 = 00011011 €45 = 11110100 1 5
€215 = 10011011 €340 = 11110111 1 2
€310 = 01011011 €47, = 01110100 1 5
€220 = 11011011 €330 = 01110111 1 1
€599 = 00111011 €11, = 11110110 1 3
€597 = 10111011 €340 = 11110111 1 2
€523 = 01111011 €114 = 01110110 1 3
€304 = 11111011 €339 = 01110111 1 1
€525 = 00000111 €176 = 11110101 1 2
€326 = 10000111 €535 = 10110111 1 3
€507 = 01000111 €175 = 01110101 1 2
€508 = 11000111 €37 = 00110111 1 3
€229 = 00100111 €240 = 11110111 1 2
€230 = 10100111 €340 = 11110111 1 2
€331 = 01100111 €330 = 01110111 1 1
€33, = 11100111 €330 = 01110111 1 1
€533 = 00010111 €176 = 11110101 1 2
€334 = 10010111 €340 = 11110111 1 2
€535 = 01010111 €175 = 01110101 1 2
€336 = 11010111 €339 = 01110111 1 1
€537 = 00110111 €340 = 11110111 1 2
€535 = 10110111 €340 = 11110111 1 2
€39 = 01110111 €39 = 01110111 1 0
€340 = 11110111 €39 = 01110111 1 1
€341 = 00001111 €176 = 11110101 1 2
€242 = 10001111 €335 = 10110111 1 3
€243 = 01001111 €175 = 01110101 1 2
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€244 = 11001111

€237 = 00110111

€245 = 00101111

€240 = 11110111

€246 = 10101111

€240 = 11110111

€247 = 01101111

€230 = 01110111

€245 = 11101111

€230 = 01110111

€249 = 00011111

€176 = 11110101

€250 = 10011111

€240 = 11110111

€251 = 01011111

€175 = 01110101

€25, = 11011111

€230 = 01110111

€253 = 00111111

€240 = 11110111

€25, = 10111111

€240 = 11110111

€255 = 01111111

€239 = 01110111

€256 = 11111111

€239 = 01110111
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