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Abstract 

Wolbachia is an alpha-proteobacteria and endosymbiont, causing infection in arthropods as parasites and in 

nematodes as mutualists. Unraveling the evolution of Wolbachia supergroups is the most fascinating topic 

among the scientific community. In this quest, we analyzed 30 Wolbachia genomes that belong to 11 

supergroups (A, B, C, D, E, F, J, L, M, S, and T). We also performed average nucleotide identity (ANI) and 

digital DNA-DNA hybridization (dDDH) analysis to understand the supergroup demarcation. Furthermore, we 

carried out multi-locusphylogenetic analysis using 189 single-copy orthologs followed by recombination 

analysis. We found that ANI values for each strain belonging to the same supergroups are supported by a 

threshold value of ≥95% except for two strains wCtub and wDcau (ANI value is 82%). dDDH analysis finds 

that most supergroups follow species boundary thereshold except supergroup J. Further, a phylogenomic tree 

was reconstructed for supergroup analysis and found that the strains wCtub and wDcau were monophyletic and 

belong to the same supergroup J. Further, strains from supergroup A and supergroup B were monophyletic. 

Supergroups J and C were monophyletic, and supergroup S was an outgroup to them. Supergroup T was an 

outgroup to supergroups C, D, F, J, and S. Supergroups E, L and M were at the base of other supergroups 

radiation (i.e., supergroups A, B, C, D, F, J, S, and T). Recombination analysis finds 8 genes (out of 189 genes) 

showed genetic recombination, which infers the role of recombination has minimal effect in Wolbachia 

supergroup evolution. Overall, this study concludes that besides the 16S rRNA-based phylogeny, ANI analysis, 

and dDDH test, phylogenomic study indispensable for unraveling the evolution of Wolbachia supergroups. 

 

Keywords: Wolbachia; evolution; phylogenomics; average nucleotide identity; dDDH; recombination. 

 

 

 

 

 

 

 

 

 

 

Network Biology 
ISSN 2220­8879 
URL: http://www.iaees.org/publications/journals/nb/online­version.asp 
RSS: http://www.iaees.org/publications/journals/nb/rss.xml 
E­mail: networkbiology@iaees.org 
Editor­in­Chief: WenJun Zhang 
Publisher: International Academy of Ecology and Environmental Sciences 



Network Biology, 2026, 16(1): 15-30 

 IAEES                                                                                      www.iaees.org    

1 Introduction 

Wolbachia is an endosymbiotic alpha-proteobacteria from Rickettsia that infect many arthropods and 

nematodes. (Sironi et al., 1995; Werren et al., 1995). These bacteria are gram-negative and obligately 

intracellular (Harris et al., 2010). Their genomes have been analyzed to determine the type and nature of 

symbiosis they perform in their host (Hoerauf et al., 2003; Duron et al., 2007; Hosokawa et al., 2010; Lindsey 

et al., 2016; Badawi et al., 2018). Their nature of relationships in the hosts is a reproductive parasite in 

arthropods, nutritional mutualists in bed bugs, and obligate mutualism in filarial nematodes (Bouchon et al., 

1998; Kageyama et al., 2002). All reproductive manipulation in the host—mostly arthropods and some 

nematodes—was mediated by Wolbachia, using parthenogenesis (P), feminization (F), male-killing (MK), 

inducing cytoplasmic incompatibility (CI), and nutritional supplementation (Sironi et al., 1995; Werren et al., 

2008; Cordaux et al., 2011; Miyata et al., 2017). According to estimates by Hilgenboecker et al. (2008), Zug 

and Hammerstein (2012), and Kajtoch and Kotásková (2018), up to 40–76% of insects may be infected with 

Wolbachia.  

Supergroups, which first appeared in 1998, are different monophyletic lineages into which Wolbachia have 

been divided (Zhou et al., 1998). This idea was later made famous by Lo et al. (2002). Initially, the majority of 

Wolbachia strains' molecular characterizations were based on either a single gene or a multilocus gene (Lo et 

al., 2002; Casiraghi, 2005; Baldo et al., 2006; Lo et al., 2007; Bordenstein et al., 2009; Ferri et al., 2011; 

Glowska et al., 2015; Konecka et al., 2015; Lefoulon et al., 2016; Ma et al., 2017; Khoo et al., 2020), and the 

Wolbachia surface protein genes, often known as wsp genes, were used to delineate supergroups by setting a 

threshold of 2.5% divergence value (Zhou et al., 1998). In addition, it was evident that wsp genes might 

recombine amongst Wolbachia strains (Baldo et al., 2005). As a result, Baldo et al. (2006) introduced the 

multilocus sequence typing (MLST) technique, which later emerged as the frequently used method for 

supergroup classification. Supergroups A and B comprised most of the supergroups' genomes sequenced when 

this MLST approach was established (Baldo et al., 2006). Bleidorn and Gerth (2018) recently conducted a 

study to review the MLST paradigm. There, they assessed the Wolbachia MLST markers' characteristics and 

contrasted them with 252 additional single-copy loci found in the genomes of different Wolbachia strains. 

According to them, MLST loci outperform but do not reflect the properties of a Wolbachia strain very well 

because they are highly conserved and slow-evolving genes. Therefore, they suggested using whole genome 

typing methods and criticized using MLST markers. 

Till now, Wolbachia has been divided into 21 supergroups, namely A–F, H–Q, and S-W (Lefoulon et al., 

2020; Laidoudi et al., 2020; Konecka, 2021; Baimai et al., 2021; Sharma and Som, 2023). Two supergroups, G 

and R, had been described as invalid (Baldo et al., 2007; Gerth et al., 2016). Wolbachia supergroups A and B 

are the most primitive, and more research has been done on these two supergroups, and hence reported that 

these are diverse groups (Ishmael et al., 2009). Among all the Wolbachia supergroups, the parasitic 

supergroups are A, B, E, H, I, K, M, N, O, P, Q, S, and U, which are found in arthropods (Casiraghi, 2004; 

Fenn et al., 2006; Comandatore et al., 2013: Lefoulon et al., 2020b: Baimai et al. 2021). Supergroups which 

are restricted to filarial nematodes belong to C, D, and J (Bandi et al., 1998; Casiraghi, 2004; Haegeman et al., 

2009; Lefoulon et al., 2016), whereas supergroup L is found only in plant-parasitic nematodes (Haegeman et 

al., 2009; Brown et al., 2016). Supergroup F is, so far, the only known clade comprising symbionts of filarial 

nematodes (wMhie as mutualistic nature) as well as arthropods (wCle as nutrition action mutualism as well as 

a parasite in nature) (Lo et al., 2002; Hosokawa et al., 2010; Ferri et al., 2011; Lefoulon et al., 2012). A new 

supergroup, T, is found in the host Cimex hemipterus (Bed bug), showing nutritional mutualism with the host 

(Laidoudi et al., 2020). Additionally, supergroups V and W found coinfecting cat fleas (Ctenocephalides felis) 

shows parasitic and mutualistic life-style respectively (Driscoll et al., 2020; Sharma and Som, 2023).  
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As Wolbachia strains show an endosymbiotic nature, there is a prevalence of the possibility of the presence 

of multiple different strains in the same host. Due to the co-existence of multiple strains in the same host cell, 

there develops a high chance of homologous recombination (Jiggins et al., 2001; Jiggins et al., 2002). Previous 

studies reported recombination between the strains (Wang et al., 2020). No recombination has been discovered 

in filarial nematodes (Foster et al., 2011). Wang et al. (2020) did a comprehensive study on identifying 

recombination with 33 Wolbachia strains and six supergroups. They reported only six genes (2.9%) for 

recombination. This also suggests that the role of homologous recombination between inter-supergroups is 

very minute for shaping the Wolbachia genomes.  

This article focused on complete genomesof Wolbachiafrom 11 supergroups. The objective is to find 

evolutionary relationships among all supergroups and the role of homologous recombination in 

inter-supergroup genome evolution. To complete these objectives, we performed comparative genomic 

analysis, ANI test, dDDH test, multilocus phylogenetic, and recombination analyses on 189 single-copy genes 

from 30 Wolbachia strains belonging to 11 supergroups. 

 

2 Materials and Methods 

2.1 Data collection  

To find the supergroup relationships of the Wolbachia genomes, we first took 16S rRNA sequences for 

phylogenetic analysis because it is a highly conserved gene and can show species delineation. For this, we use 

strains of all the previously identified 11 supergroups, consisting of 30 Wolbachia strains in the study. Then 

we use complete genomes of selected 30 Wolbachia strains from 11 supergroups (i.e., A-F, J, L, M, S, and T). 

Details of the 30 genomes are given in (Table 1). Furthermore, we took 189 coding DNA sequences 

(single-copy genes) and their amino acid sequences for each Wolbachia genome. Therefore, this study 

included 12,096 sequences and all the sequences were downloaded from NCBI 

(https://www.ncbi.nlm.nih.gov/). 

 

 
Table 1 Genomic details of the Wolbachia strains used in the study. 

S.No. Strains NCBI Id Supergr

oups 

Length (in 

Mbp) 

GC% Protei

ns 

Pseudog

enes 

Host 

1 wMel NC_002978.6 A 1.27 35.2 1143 103 Arthropods 

2 wNpa PRJNA322628 A 1.34 35.2 1,217 138 Arthropods 

3 wNfla PRJNA322628 A 1.33 35.2 1203 140 Arthropods 

4 wHa NC_021089.1 A 1.30 35.1 1123 91 Arthropods 

5 wInc CP011148.1 A 1.27 35.8 953 242 Arthropods 

6 wCauA CP041215.1 A 1.45 35 1258 123 Arthropods 

7 wRi NC_012416.1 A 1.44 35.2 1237 95 Arthropods 

8 wNo NC_021084.1 B 1.30 34.0 1071 105 Arthropods 

9 wPip_Mol PRJEB4607 B 1.44 35.0 1122 87 Arthropods 

10 wVitB PRJNA61407 B 1.11 34.0 900 116 Arthropods 

11 wAlbB PRJNA508212 B 1.49 34.5 1173 193 Arthropods 

12 wMeg CP021120.1 B 1.37 34.0 1116 111 Arthropods 

13 wMau CP034335.1 B 1.27 34.0 1110 99 Arthropods 

14 wBtab CP016430.1 B 1.31 35.1 979 222 Arthropods 

15 wOo NC_018267.1 C 0.96 32.1 646 47 Nematodes 
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16 wOvul NZ_HG810405.1 C 0.96 32.1 650 45 Nematodes 

17 Dimm CP046578 C 0.92 32.7 660 24 Nematodes 

18 wBm NC_006833.1 D 1.08 34.2 832 128 Nematodes 

19 wWb PRJNA388334 D 1.06 34.3 811 124 Nematodes 

20 wBpah NZ_CP050521.1 D 1.07 34.2 857 130 Nematodes 

21 wLsig CP046577 D 1.04 32.1 714 74 Nematodes 

22 wFol NZ_CP015510.2 E 1.80 34.4 1540 84 Arthropods 

23 wCle NZ_AP013028.1 F 1.25 36.3 1012 174 Arthropods 

24 wMhie PRJNA593581 F 1.02 36.1 960 145 Nematodes 

25 wCtub CP046579 J 0.86 32.3 623 29 Nematodes 

26 wDcau CP046580 J 0.86 28.0 607 12 Nematodes 

27 wPpe PRJNA343941 L 0.97 32.1 851 76 Nematodes 

28 wApol PRJNA593570 S 1.44 35.5 1121 468 Arthropods 

29 wPni PRJNA628023 M 1.46 34.1 1261 227 Arthropods 

30 wChem 

PL13 
NZ_CP061738.1 

T 1.29 
35.4 1075 

125 
Arthropods 

 

 

2.2 Average Nucleotide Identity (ANI) and digital DNA-DNA Hybridization (dDDH) measures 

The supergroups are sub-species level, and their genomes are close enough to each other, so genomic 

divergence analysis is required for supergroup identification. Accordingly, we performed an ANI analysis 

using OrthoANIu tool (Yoon et al., 2017). ANI measures nucleotide-level genomic similarity between the 

coding regions of two genomes, and here we attempt to find the divergence of genomes to check whether two 

genomes are from the same supergroup or belong to different supergroups based on their genomic content 

similarity. We also compared both genomes with other genomes belonging to different supergroups to check 

for their genomic similarity and divergence. 

We also used dDDH to calculate in-silico genome-to-genome comparison using the GGDC tool 

(Meier-Kolthof et al., 2013). The dDDH analysis emerged as an alternative to the wet-lab DNA–DNA 

hybridization of species delineation. In GGDC, we used the genome blast distance phylogeny approach to 

calculate the probability that an inter-genomic distance yielded a dDDH larger than 70 %, representing a novel 

species-delimitation threshold (Auch et al., 2010).  

2.3 Phylogenetic analysis 

In the phylogenetic analysis, we reconstructed the 16S rRNA phylogeny of 30 strains from 11 supergroups. 

Further, we used coding DNA and amino acid sequences for the phylogenomic analysis. We prepared a set of 

ortholog protein sequences by performing an All-vs-All BLAST similarity search on the whole proteome 

datasets for every 30 genomes (https://blast.ncbi.nlm.nih.gov/Blast.cgi). We selected the sequences with the 

best reciprocal BLAST hits. The parameters used are top BLAST score results having >70% query coverage 

and E-value <10-5. We used the orthoven2 package (Xu et al., 2019). Further, we aligned all the ortholog 

sequences by MUSCLE (Edgar et al., 2004) and removed poorly aligned sites by TRIMAL (Capella-Gutierrez 

et al., 2009). Then, we concatenated the aligned protein sequences using MEGAX (Kumar et al., 2018). Then, 

the phylogenetic tree was reconstructed by using the IQTREE package (Trifinopoulos et al., 2016). We also 

performed the model test to find the best suitable model using ModelFinder (Kalyaanamoorthy et al., 2017). 

This entire protocol is also used for coding DNA sequences and reconstructing nucleotide trees using the 

IQTREE package. We have visualized and edited the trees using iTOL (Letunic et al., 2021). 
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3.4 Recombination 

Recombination is essential to bacterial evolution (Didelot et al., 2012). Thus, we intended to investigate 

putative/homologous recombination events between the strains. Accordingly, we performed the recombination 

test on all 189 orthologous genes set using the RDP4 package. We identified eight genes (4.2% of 189 genes) 

that showed inter-supergroup recombination, seven of which were from supergroups A and B. A detailed 

description of the recombination analysis is given in Table 2. 

 

 

Table 2 List of Wolbachia genes shows inter-supergroup recombination events. 

 

 

 

4 Discussion  

4.1 Revisiting the Wolbachia supergroup phylogenies: An assessment 

Evolutionary biologists have been interested in understanding the underlying evolutionary mechanism of 

Wolbachia and its supergroups classification since 1992 when O'Neill reported that Wolbachia pipientis 

belong to the alpha-subdivision of the Proteobacteria (O'Neill et al., 1992). After that, in the last 30 years, a 

vast number of research articles have been published on various evolutionary aspects of Wolbachia, such as 

supergroup identification, inter/intra group recombination, HGT etc. and made significant progress towards 

understanding Wolbachia diversity and lifestyle using a single gene to few hundred genes (Baldo et al., 2005; 

Bordenstein et al., 2009; Ellegaard et al., 2013). Initially, due to limited data, most of the phylogenetic 

inferences were based on single to few genes with limited supergroups (Lo et al., 2002; Casiraghi, 2005; 

Bordenstein et al., 2009; Ferri et al., 2011; Glowska et al., 2015). In the last decade, because of the 

advancement of high throughput sequencing technology, Wolbachia's evolution has been studied using upto 

few hundred single-copy orthologs (Ellegaard et al., 2013; Gerth et al., 2014; Comandatore et al., 2015; Wang 

et al., 2020; Lefoulon et al., 2020) and made substantial progress on the Wolbachia evolution and diversity 

including discovery/classification of 20 supergroups. Unfortunately, despite substantial efforts, there is no 
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univocal Wolbachia supergroup phylogeny. Instead, there is a ubiquitous discordance among the different 

phylogenies inferred using up to a few hundred loci. This is probably because of Wolbachia's inherent genomic 

complexity. The problem is further extrapolated because the concatenation of aligned sequences called the 

supermatrix approach, suffered from various biological factors such as HGT, gene loss/gain, recombination 

and heterotactic etc (Seo et al., 2005). Details of the negative factors and their causes and consequences have 

been thoroughly discussed in the review by Som (2015), which is beyond the scope of the article. Therefore, 

the dream of a fully resolved Wolbachia supergroup phylogeny can be archived by overcoming the aforesaid 

biological factors by correct loci selection, incorporating a large no of loci, appropriate model and method of 

tree reconstruction which can deal with the heterotactic problem (i.e., within site-specific rate variation) caused 

by the concatenation of the fast and slowly evolving genes (Lopaze, 2002; Rokas and Carroll, 2005; Philippe, 

2005; Heath et al., 2008; Som et al., 2009; Som, 2013; Som, 2015). 

4.2 Recombination in Wolbachia genomes 

Our study identified eight genes showing recombination (i.e., about 4.2% of the total 189 orthologs). Most 

show inter-supergroup recombination (mostly between two supergroups, A-B). We did not find any putative 

homologous recombination between Wolbachia showing mutualistic life style, it might be because they 

somehow able to established mutual understanding between their host to get energy requirements by 

establishing healthy protein-protein between nematode host as in the case of supergroups C, D and J (Sharma 

et al., 2023). A similar study was done by Wang et al. (2020), where they got six genes showing inter-clade 

recombination. This might be due to taxon selection, as we selected 30 genomes from 11 supergroups, and 

they used 33 genomes with six supergroups. These recombination results indicate that in the evolution and 

diversification of Wolbachia supergroups, the role of homologous recombination is diminishing. 

 

5 Conclusions 

In our analysis, we found that both ANI and dDDH values were not ≥ 95% and 70% respectively for all strains 

that belong to the same supergroup, suggesting that both ANI and dDDH tests are required for species 

delimitation analysis. Further, phylogenetic analyses including 16S rRNA, RbMLST and Phylogenomic study 

based on orthologous genes from whole genomes were also contradictory, as 16S rRNA-based phylogeny 

suggest that supergroups E is closer to supergroup A, however RbMLST and phylogenomic tree suggest that 

supergroup E has highly diverged and present at the base of Wolbachia radiation. This study also reports that 

the role of recombination has a minimal effect in supergroup evolution. Thus our analyses recommend that 

along with ANI and dDDH tests, phylogenetic studies (i.e., 16S rRNA-based phylogeny, RbMLST and 

phylogenomic analysis) are required to reveal Wolbachia supergroup delimitation. The lack of full genomic 

data limits our analysis, so more Wolbachia genomes are required for further insights into Wolbachia 

evolution and diversity. 
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