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Abstract 

Network pharmacology devotes to understand the pharmacological mechanism of drug action in the network 

perspective. Based on previous studies, in present article I further outlined and defined the aims, scope, theory 

and methodology of network pharmacology.  
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1 Introduction 

During the past twenty years, the successful cases of drug design have been dropping significantly. The failure 

cases in clinical trials, due to lack of drug efficacy and unexpected toxicity, have accounted for more than half 

of the failure cases of drug design (Kola and Landis, 2004). The main cause was strongly attributed to the 

wrong guiding ideology for drug design in traditional pharmacology based on the view of a drug - a target - a 

disease. 

   Complex diseases, such as cancer and diabetes, etc., do not usually attributed to mutation or dysfunction of 

a single molecule, but are usually caused by dysfunction of related whole regulation network. In a network, a 

single molecule is a network node. So even a single molecule changes insignificantly, they will collectively 

lead to a substantial change in the whole signal path. For example, research has founded that the 10% increase 

of a single molecule expression level in metabolic pathways can lead to 100% of final metabolite production. 

The research on cancer genome project has revealed that the vast majority of mutations exist only in a few 

samples, and to find the same genetic mutation is almost impossible. At the level of network, however, 

cancer-related mutations will mostly appear in the genes of specific signaling pathways. Thus, for diagnosis 

and treatment of cancer and other complex diseases, the target is not surely a single gene, but may be a specific 

pathway or network. The analysis of molecular mechanisms of diseases based on biological networks is thus 

imperative. As a concequence, Hopkins (2007, 2008) put forward the concept of network pharmacology. 

Network pharmacology devotes to understand drug’s pharmacological mechanism in the network perspective. 
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In a sense, it is also a branch of network biology (Zhang, 2011a, 2011b, 2012a, 2016d; Budovsky and Fraifeld, 

2012; Huang and Zhang, 2012; Zeitoun et al., 2012; Li and Zhang, 2013; Iqbal et al., 2014; Shams and 

Khansari, 2014; Jesmin et al., 2016; see more details of network biology at 

http://www.iaees.org/publications/journals/nb/nb.asp). 

Network pharmacology aims to understand diseases at the systematic level, and to know the interaction 

between the drug and the body on the basis of equilibrium theory of biological networks. It is substantially 

bringing the significant changes of theory and methodology in drug design (Gertsch, 2011; Li and Zhang, 2013; 

Zhang et al., 2013; Zheng et al., 2013; Hao and Xiao, 2014; Shi et al., 2014). 

 

2 Aims and Scope 

Network pharmacology is an interdisciplinary science based on pharmacology, network biology, systems 

biology, bioinformatics, computational science, and other related scientific disciplines. In particular, it is a 

network-based science, just like other new proposed sciences (Zhang, 2016c). Network pharmacology aims to 

understand the network interactions between a living organism and drugs that affect normal or abnormal 

biochemical function. It tries to exploit the pharmacological mechanism of drug action in the biological 

network, and helps to find drug targets and enhance the drug’s efficacy. The scope of network pharmacology 

covers but not limits to: (1) theories, algorithms, models and software of network pharmacology; (2) network 

construction and interactions prediction; (3) theories and methods on dynamics, optimization and control of 

pharmacological networks (here generally refer to disease network, disease - disease, disease - drug, drug - 

drug, drug - target network, network targets - disease, and drug targets - disease network, etc.); (4) network 

analysis of pharmacological networks, including flow (flux) balance analysis, topological analysis, network 

stability, etc.; (5) various pharmacological networks and interactions; (6) factors that affect drug metabolism; 

(7) network approach for searching targets and discovering medicines (including medicinal plants, etc); (8) big 

data analytics of network pharmacology, etc.   

 

3 Theoretical Fundamentals 

3.1 Scientific foundation 

3.1.1 Pharmacology 

Pharmacology is the branch of medicine and biology on drug action where a drug can be broadly defined as 

any man-made, natural, or endogenous molecule which exerts a biochemical and/or physiological effect on the 

cell, tissue, organ, or organism (Vallance and Smart, 2006; Wikipedia. 2016b). It aims to study the interactions 

between a living organism and chemicals that affect normal or abnormal biochemical function.  

There are a lot of branchs of pharmacology, clinical pharmacology, neuropharmacology, 

psychopharmacology, theoretical pharmacology, behavioral pharmacology, environmental pharmacology, 

biochemical and molecular pharmacology, cardiovascular pharmacology, gastrointestinal pharmacology, 

respiratory tract pharmacology, and urogenital pharmacology, etc. 

3.1.2 Network biology  

Network Biology was first proposed by Barabasi and Otlvai in 2004. Laterly, Zhang (2011b, 2012a) further 

defined the scope of network biology from cellular level to ecosystems and social networks. He also 

established the first and only journal on network biology (details can be found at 

http://www.iaees.org/publications/journals/nb/nb.asp). According to the journals’ description, network biology 

focuses on (both dynamic and static) nodes (molecules, metabolites, cells, etc.) and between-node interactions 

in biological networks (pathways, ecosystems, etc.). It covers theories, algorithms and programs of network 

analysis; innovations and applications of biological networks; Dynamics, optimization and control of 
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biological networks; ecological networks, food webs and natural equilibrium; co-evolution, co-extinction, 

biodiversity conservation; metabolic networks, protein-protein interaction networks, biochemical reaction 

networks, gene networks, transcriptional regulatory networks, cell cycle networks, phylogenetic networks, 

network motifs; physiological networks; network regulation of metabolic processes, human diseases and 

ecological systems; social networks, and epidemiological networks, etc. In recent years, the theory and 

methodology of network biology have been establishing (Jiang and Zhang, 2015; Zhang, 2011a-b, 2012a-c, 

2015a-c, 2016a-d; Zhang and Li, 2015). A lot of papers on biological networks of human diseases have been 

published also (Tacutu et al., 2011; Budovsky and Fraifeld, 2012; Huang and Zhang, 2012; Zeitoun et al., 2012; 

Li and Zhang, 2013; Iqbal et al., 2014; Shams and Khansari, 2014; Zhang and Li, 2015, Jesmin et al., 2016).  

3.1.3 Systems biology  

Hood (1998) first proposed the scientific discipline, sytems biology, and defined it as the science that studied 

all components and their interactions in biological systems. In the view of systems biology, the organism is a 

complex system containing many interactions between components (genes, proteins, mRNAs, small molecular 

metabolites, etc.) at multiple layers (cell, tissue, organ, and whole body) of the organism. Biological systems 

have such properties as emergency, complexity and robustness (Hood, 1998, 2002, 2003; Ideker et al., 2001; 

Schrattenholz et al., 2010; Zhang, 2012a, 2016d). Systems biology aims to exploit all components and their 

interactions under certain conditions (e.g., various genetic and environmental conditions), and to predict 

biological functions, phenotypes and their behaviors. According to systems biology, the drug target should be 

extended from the single molecule into molecular combination, a signal transduction pathway, or even a few of 

pathways (Frantz, 2005; Schrattenholz et al., 2010).  

3.2 Basic principles 

There are at least two basic principles in ideology of network pharmacology: (1) Schilling et al. (1999) held 

that throughout natural selection, the cellular metabolic activities always maintain a balance when no 

significant perturbation occurs, or regulatorily minimize the systematic bias from resting status. From the 

perspective of network biology, a biological network (human body) at steady state / natural equilibrium state is 

at the healthy state, i.e., a stable network with a specific topological structure and certain network properties. If 

the network equilibrium is disrupted or damaged, it will change to the pathological or disease state, i.e., an 

unstable network with different topological structure and network properties. A drug for disease treatment is to 

restore the biological network to the balance / equilibrium state, or reduce the degree of balance being 

destroyed (Yildirim et al., 2007; Janga and Tzakos, 2009). According to Le Chatelier's principle, if the balance 

(health state) of a system (network) has experienced a change (to a disease state), the role of an effective drug 

is to drive the balance to the direction that will weaken such change. (2) Due to biological redundancy (e.g., 

the redundancy of metabolites/molecules/reactions/interaction, etc.), which is the result of natural evolution, in 

my view, as an alternative solution, the role of an effective drug is to induce a somewhat different biological 

network that can guarantee the operation of basic functionality of the healthy biological network, if the normal 

balance is not easily achieved.  

Network pharmacology is proposed based on the theory of network biology and biological balance, and it 

thus provides new ideas for drug discovery, as well as for understanding the mechanism of drug functioning. 

In the perspective of network pharmacology, we should try to perturb the pathogenic network using the drug 

rather than search for pathogenic genes only (Barabasi and Otlvai, 2004; Chen et al., 2008). 

 

4 Methodology  

Based on high-throughput -omics data, network database retrievals and other biological information, network 

pharmacology stresses construction of pharmacological networks, topological analysis of pharmacological 
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networks, network flow analysis, structural optimization and optimal control of pharmacological networks, etc. 

Other experiment and observation based methods are also included (Li and Zhang, 2013). 

4.1 Data source  

There are two sources of foundamental data for research in network pharmacology, public databases and 

experimental verification. First, we can use public databases, i.e., the existing public data and published data, 

to construct network models of the specific disease and drug target, to predict the drug target (Budovsky and 

Fraifeld, 2012); further, to construct drug-target-disease network and analyze pharmacological mechanism of 

the drug, and finally validate the mechanism through experiments (Zhou et al., 2012). Second, we may use 

-omics technologies and high -throughput technologies to investigate the interactions between the drug and 

network model, to construct and analyze drug-target-disease network based on the generated data, and to 

analyze pharmacological mechanism of drug action.  

4.2 Big data analytics 

Big data is the data sets so large or complex that conventional data processing tecgniques are inadequate. 

Challenges include analysis, capture, data curation, search, sharing, storage, transfer, visualization, querying 

and information privacy (Wikipedia, 2016c). 

Big data analytics is the process of examining big data to uncover hidden patterns, unknown correlations 

and other useful information. With big data analytics, e.g., high-performance data mining, predictive analytics, 

text mining, forecasting and optimization, we can analyze huge volumes of data that conventional analytics 

can not handle. In addition, machine learning techaniques are ideally suited to addressing big data needs 

(Zhang, 2007b, 2010; Zhang and Qi, 2014; SAS, 2016). Many problems in network pharmacology, network 

construction, interactions prediction, etc. are also expected to be addressed by using big data analytics. 

4.3 Network construction and interactions prediction  

For a disease and the corresponding drug, the pharmacological network is the most important basis for further 

phamarcetical studies. However, most pharmacological networks are unknown or imperfect. Therefore, how to 

construct a pharmacological network is a prerequisite for such diseases. Among them, the networks of disease 

related protein interactions are the most important. The most used methods to find such interactions and 

construct pharmacological networks include phylogenetic profile (Gaasterland and Ragan, 1998; Pellegrini et 

al., 1999), gene neighborhood (Dandekar et al., 1998), gene fusion event (Marrcotte et al., 1999), mirror tree 

(Fryxell. 1996), correlated mutation (Gobel et al., 1994), correlated evolutionary rate (Fraser et al., 2002), 

prediction from primary structure (Bock and Gough, 2001), and homologus structural complexies (Aloy and 

Russell, 2003), etc. Among them, phylogenetic profile method is considered to be particularly useful for 

construction of networks and prediction of large scale interactions. Tu (2006) used Pearson correlation 

between proteins, which is based on phylogenetic profile method, to construct the networks of small-cell lung 

cancer and non-small-cell lung cancer and predict potential interactions. Zhang (2011a, 2012a, 2012b) has 

proposed a series of correlation methods to construct networks. Pearson correlation measure will lead to a false 

result (Zhang and Li, 2015). Thus, Zhang (2015c) used partial linear correlation and proposed some partial 

correlation measures, and used them to jointly predict interactions (Zhang, 2015b). Moreover, there are a lot of 

other studies on construction and prediction of biological networks (Goh et al., 2000; Pazos and Valencia, 

2001; Guimera and Sales-Pardo, 2009).  

   We may use an incomplete network to predict missing interactions (links) (Clauset et al., 2008; Guimera 

and Sales-Pardo, 2009; Barzel and Barabási, 2013; Lü et al., 2015; Zhang, 2015d, 2016a, 2016d; Zhang and Li, 

2015). 

Generally, network evolution based (Zhang, 2012a, 2015a, 2016b), node similarity based (Zhang, 2015d; 

based on prediction from primary structure), and correlation based (Zhang, 2007a, 2011a, 2012a, 2012b, 
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2015d, 2016d; Zhang and Li, 2015) methods are expected to be the most promising in the future. 

4.4 Network analysis 

Network analysis covers a variety of areas and methods (Zhang, 2012a). Main contents of network analysis, 

used in network pharmarcology, include the following aspects. 

4.4.1 Attribute analysis 

Attribute analysis aims to screen node attributes (e.g., protein attributes, etc.) based on their contribution to 

topological structure of the network (Zhang, 2016e). 

4.4.2 Topological analysis 

Topological analysis of networks mainly includes the following 

Find trees in the network: DFS algorithm, Minty’s algorithm, etc (Minty, 1965; Zhang, 2012a). 

Find circuits (closed paths, loops) (Paton, 1969; Zhang, 2012a, 2016e). 

Finf the maximal flow: Ford—Fulkerson algorithm (Ford and Fulkerson , 1956; Zhang, 2012a). 

Find the shortest path: Dijkstra algorithm, Floyd algorithm (Dijkstra, 1959; Zhang, 2012a; Zhang, 2016e). 

Find the shortest tree: Kruskal algorithm (Zhang, 2012a). 

Calculate network connectedness (connectivity), blocks, cut vertices, and bridges (Zhang, 2012a). 

Calculate node centrality (Zhang, 2012a, 2012c; Shams and Khansari, 2014; Jesmin et al., 2016). 

Find modules, mosaics, and sub-networks (Kondoh, 2008; Bascompte, 2009; Zhang, 2016f; Zhang and Li, 

2016). 

Analyze degree distribution (Huang and Zhang, 2012; Zhang, 2011a, 2012a, 2012c; Zhang and Zhan, 2011; 

Rahman et al., 2013). 

For example, degree distribution and crucial metabolites/reactions of tumor pathways have been conducted  

(Huang and Zhang, 2012; Li and Zhang, 2013; Zhang, 2012c). In addition to the methods above, other 

statistical methods, e.g., PCA, etc., are also useful in network analysis. 

4.4.3 Network structure and stability 

Stability of biological networks has been studied in the past (Din, 2014). These studies have been focused on 

ecosystems and the methods can be used in the phamarceutical studies. Pinnegar et al. (2005) used a detailed 

Ecopath with Ecosim (EwE) model to test the impacts of food web aggregation and the removal of weak 

linkages. They found that aggregation of a 41-compartment food web to 27 and 16 compartment systems 

greatly affected system properties (e.g. connectance, system omnivory, and ascendancy) and influenced 

dynamic stability (Zhang, 2012a).  

The most developed theory is that there is a relationship between network connectance and different types 

of ecosystem stability. Some models suggest that lower connectance involve higher local (May, 1973; Pimm, 

1991; Chen and Cohen, 2001) and global (Cohen et al., 1990; Chen and Cohen, 2001) stability, i.e., the system 

recovers faster after a disturbance. However, another theory suggests that a food web with higher connectance 

has more numerous reassembly pathways and can thus recover faster from perturbation (Law and Blackford, 

1992).  

4.4.4 Flow (flux) balance analysis 

Network flow is determined by topological structure and properties of the network (Borgatti, 2005). Flow 

balance analysis aims to analyze network flows at the steady state. Differential equations and other equations 

are usually used to describe network dynamics (Chen et al., 2010; Schellenberger et al., 2011). As an example, 

Jain et al. (2011) used mathematical models to decipher balance between cell survival and cell death using 

insulin. 

Some standardized indices and matrices can be used in flow balance analysis (Latham, 2006; Fath et al., 

2007; Zhang, 2012a). They include Average Mutual Information (AMI) (Rutledge et al., 1976). Ascendency 
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(A) index of a system was developed by Ulanowicz (1983, 1997). Compartmentalization index is used to 

measure the degree of well-connected subsystems within a network (Pimm and Lawton, 1980). Constraint 

efficiency is a measure of a total of constraints that govern flow out of individual compartments (Latham and 

Scully, 2002). Zorach and Ulanowicz (2003) have presented effective measures (effective connectivity, 

effective flows, effective nodes, effective rules) for weighted networks. Fath and Patten (1999a) developed a 

measure (measures the evenness of flow in a network) for network homogenization. In addition, Higashi and 

Patten (1986, 1989) and Fath and Patten (1999b) presented an index for describing the dominance of indirect 

effects. 

4.4.5 Network models 

Network models are the foundation to understand interactions within complex networks. Various random 

graph models produce network structures that may be used in comparison to real complex networks 

(Wikipedia, 2016a). Some network models have been developed for food webs (Zhang, 2012a), such as 

cascade model (Cohen et al., 1990), niche model (Williams and Martinez, 2000), multitrophicassembly model 

(Pimm 1980, Lockwood et al. 1997), MaxEnt models (Williams, 2010), and Ecopath model (Polovina, 1984; 

Christensen and Pauly, 1992; Libralato et al., 2006), etc. Ecosim is the dynamic program of the EwE (Walters 

et al., 1997, 2000). It is based on a set of differential equations derived from the Ecopath equation above, 

which allows a dynamic representationof the system variables, like biomasses, predation, and production 

(Libralato et al., 2006). They can be revised and improved to fit pharmacological networks. In addition, some 

dynamic evolution models are also network models (Zhang, 2016b). 

4.5 Network dynamics, evolution and control 

Theoretically, Ferrarini (2011a, 2011b, 2013a-d, 2014) have proposed a series of thoughts and methods on the 

dynamics, controllability and dynamic control of biological networks. Zhang (2015a) proposed a generalized 

network evolution model and self-organization theory on community assembly, in which the model is a series 

of differential (difference) equations with different number as the time. In addition, Zhang (2016b) developed 

a random network based, node attraction facilitated network evolution method. The two dynamic models are 

useful to study the network evolution, dynamics, and to predict interactions. 

A network can be optimized to search for an optimal search plan, and achieve a topological structure so 

that the network possesses relative stability (Zhang, 2012a). The dynamic control of network means to change 

topological structure and key parameters of the network stage by stage so that the goal function of entire 

network achieves the optimum or suboptimum (Zhang, 2012a). Mathematical tools, like dynamic 

programming, decision-making analysis, game theory, etc., can be used to address these problems. 

Luo (2007) conducted a constraint optimization on flux balance model in order to study cellular metabolic 

network (Fig. 1). First, a central carbon metabolism network model of the yeast cell was developed and 

metabolic flux analysis was conducted on it. Second, use the metabolic balance analysis to establish 

mathematical model (both differential equations and other flux balance equations) of cellular metabolic 

network, and use the growth capacity and Minimization of Metabolic Adjustment (MOMA) methods to 

optimize the model. Finally, compute the results, and make analysis. Optimization analysis on the model of 

cellular metabolic network can improve the efficiency and accuracy of the metabolic balance model. It will 

also enhance our understanding on cell metabolic regulation, help gain insight on the unknown metabolic 

fluxes, identify node’s rigid nature, help identify metabolic network of alternative channels, and thus calculate 

the theoretical maximum yield of metabolites. To study cell migration controlled by Rho GTPases, Kim et al. 

(2015) built a dynamic network model of Rho GTPases signal network, and developed a Boolean network 

model used to analyze various states and emergency reconstruction of Rho GTPases signal network. In order 

to reveal Epithelial Mesenchymal Transition (EMT) in the process of cancer metastasis from the dynamics 
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5.3 Guide research and design of new drugs  

The selectivity of many approved drugs has proved to be worse than expected (Campillos, 2008). So far, some 

drugs of multiple targets are clinically successful, especially double or multiple enzyme inhibitors (Lange et al., 

2007). Some medicine for treatment of tumors can be combined with multiple kinases (Frantz, 2005). 

Moreover, drug - target networks have scale-free properties (Campillos, 2008; Janga and Tzakos, 2009), 

therefore a single protein will show compensation mechanism for dysfunction, and the single target strategy 

thus fails to work.  

 

6 Perspective 

Besides being limited by deficient methodology of network biology and systems biology, network 

pharmacology will face such challenges as the limited knowledge and technology for identification of drug 

targets, fewer multi-target drugs, and poor database quality, etc. Nevertheless, network pharmacology is an 

emerging branch of pharmacology built on massive -omics data and multiple sciences. It is expected to greatly 

develop in the future. 
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