Finding trees in the network: Some Matlab programs and application in tumor pathways

WenJun Zhang
School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; International Academy of Ecology and Environmental Sciences, Hong Kong
E-mail: zhwj@mail.sysu.edu.cn, wjzhang@iaees.org

Received 28 November 2015; Accepted 22 December 2015; Published online 1 June 2016

Abstract
Both DFS and Minty algorithms are used to find trees in a network (graph). In present article I present full Matlab codes of the two algorithms for using in the studies of network pharmacology. Trees are found in tumor pathways.

Keywords network; tree; Matlab; DFS; Minty.

1 Introduction
In the graph theory, a graph without any circuit is called acyclic graph. Connected acyclic graph is called tree (Zhang, 2012). A tree is called the spanning tree of a graph, if the tree contains all vertices of the graph. A connected graph must contain a spanning tree. These statements are true for networks also. DFS (Depth First Search; Tarjan, 1972) algorithm is used to obtain a tree from a network (graph). Minty’s algorithm (Minty, 1965) can be used to obtain all trees in a network (graph). In present article, I will present full Matlab codes of the two algorithms for potential application in the studies of network pharmacology.

2 Algorithms
Assume there are totally \(n \) nodes (vertices) in the network (graph), and adjacency matrix of the network is \(d=(d_{ij}), i,j=1,2,...,n \), where \(d_{ij}=d_{ji} \), \(d_{ii}=0 \), and if \(d_{ij}=1 \) or \(d_{ji}=1 \), there is a link (connection) between nodes \(i \) and \(j \).

2.1 DFS algorithm
The DFS algorithm is as follows (Tarjan, 1972; Zhang, 2012): First, change the adjacency matrix to Adjacency Vertex Listing. The ID number of starting node to be searched is 1. If \(T \) is the set of links (edges) on the tree \(k \) is the sequence number, \(B \) is the set of links not on the tree, \(v \) is the node being checked, \(w \) is the node to be checked, and \(n(i) \) is the ID number of each node, then

(1) Let \(v=1, k=1, j=1, n(1)=1 \).
(2) Search the incidence link that is not yet checked:

First, take the first link of \(v \), being not yet checked, and set it to be \((v, w)\). Reach the node \(w \) from this link.

The direction of the link \((v, w)\) is from \(v \) to \(w \). Return to (3).

If such a link was not found after each of the incidence links of \(v \) has been checked, return to (4).

(3) If \(w \) is the node being not yet visited (i.e., \(n(w) \) has not yet been determined), put the link \((v, w)\) to \(T \), and let \(v^\prime = w \), \(k = k + 1 \), \(n(w) = k \).

If \(w \) is the node that has been visited (i.e., \(n(w) \neq 0 \)), send the link \((v, w)\) into \(B \), return to the node \(v \), and let
\(j = j + 1 \), return to (2).

(4) Determine the link \((u, v)\) that orients to node \(v \) in \(T \). Find out this link and return to node \(u \), let \(v = u \), and return to (2). If there is not such a link, terminate the calculation.

The Matlab codes for the DFS algorithm, DFS.m, are as follows

```
% DFS algorithm to obtain a tree in a network/graph.
function [tree,k,t1,t2,b1,b2,num]=DFS(d)
% d: adjacency matrix of the network; adjacency matrix is d=(dij)n*n, where n is the number of nodes in the network. dij=1 if
% vi and vj are adjacent, and dij=0, if vi and vj are not adjacent; i, j=1,2, ..., n.
% tree: string of a tree and all parameters and vectors.
% k: number of links on the tree; l: number of links not on the tree.
% t1[], b1[]: start nodes; t2[], b2[]: end nodes.
% t1[],t2[]: set of links on the tree; b1[],b2[]: set of links not on the tree.
% num[]: DFS labels of nodes.

n=size(d,1);
r=zeros(1,n);
r = sum(d);
e=max(r);
p=zeros(n,e);
for i=1:n
    m=0;
    for j=1:n
        if (d(i,j)~=0) m=m+1;p(i,m)=j; end
    end
    for j=1:n
        if (d(i,j)~=0) m=m+1;p(i,m)=j; end
    end
    num=zeros(1,n);
t1=zeros(1,n);
t2=zeros(1,n);
b1=zeros(1,n*e);
b2=zeros(1,n*e);
k=1; l=1; v=1; num(1)=1;
for i=2:n
    num(i)=0;
end
lab3=0;
while (n>0)
    s=r(v);
    while (n>0)
        lab2=0;
```
for i=1:s
if (p(v,i)==0) continue; end
w=p(v,i);
p(v,i)=0;
for j=1:r(w)
if (p(w,j)==v) p(w,j)=0; break; end
end
lab1=0;
if (num(w)==0)
t1(k)=v;
t2(k)=w;
k=k+1;
num(w)=k;
v=w;
lab1=1; break;
else
b1(l)=v;
b2(l)=w;
l=l+1;
lab2=1; break;
end; end
if (lab1==1) break;
elseif (lab2==1) continue; end
if (num(v)==1)
m=num(v)-1;
v=t1(m);
break;
end
lab3=1; break;
end
if (lab1==1) lab1=0; continue; end
if (lab3==1) break; end
end;
k=k-1;
l=l-1;
tree='A tree in the network/graph:
';
for i=1:k
tree=strcat(tree,'(',num2str(t1(i)),',',num2str(t2(i)),')');
if (i==k) tree=strcat(tree,''); end
end
tree=strcat(tree,'
DFS labels of nodes (num[]):
');
for i=1:n
tree=strcat(tree,num2str(num(i)));
if (i==n) tree=strcat(tree,''); end
end
tree=strcat(tree,'\nStart nodes of the links on the tree (t1[])\n');
for i=1:k
 tree=strcat(tree,num2str(t1(i))); if (i\=k) tree=strcat(tree,');\n'; end
end

for i=1:k
 tree=strcat(tree,'\nEnd nodes of the links on the tree (t2[])\n');
 tree=strcat(tree,num2str(t2(i))); if (i\=k) tree=strcat(tree,');\n'; end
end

for i=1:l
 tree=strcat(tree,'\nStart nodes of the links not on the tree (b1[])\n');
 tree=strcat(tree,num2str(b1(i))); if (i\=l) tree=strcat(tree,');\n'; end
end

for i=1:l
 tree=strcat(tree,'\nEnd nodes of the links not on the tree (b2[])\n');
 tree=strcat(tree,num2str(b2(i))); if (i\=l) tree=strcat(tree,');\n'; end
end

2.2 Minty’s algorithm

Suppose an arbitrary link (edge) of a network (graph) \(X\) is \(e_i\). Divide all trees into two categories based on \(e_i\), in which a category contains \(e_i\) and another one does not contain \(e_i\). Find two subnetworks (subgraphs) \(X_1\) and \(X_2\) from \(X\), where adds \(e_i\) in \(X_1\), and eliminates \(e_i\) in \(X_2\). Every tree in \(X_1\) is added with \(e_i\), which forms the first category of trees in \(X\), and all trees in \(X_2\) belong to the second category of trees in \(X\). Choose another link (edge), repeat above procedures to get two subnetworks (subgraphs) from \(X_1\) and \(X_2\) respectively. In such a way, two new subnetworks (subgraphs) can be obtained each time. If the graph becomes a loop, then delete this subnetwork (subgraph). By removing all links (edges), all links (edges) of the subnetwork (subgraph) constitutes a tree. All trees are obtained after every subnetwork (subgraph) is handled (Minty, 1965; Chan et al., 1982; Zhang, 2012).

Chan et al. (1982) made a revision on Minty’s algorithm. The Matlab codes for the revised Minty algorithm, Minty.m, are as follows

```matlab
function trees=Minty(d)
% Revised Minty algorithm to obtain all trees in a network/graph.
% d: adjacency matrix of the network; Adjacency matrix is d=(dij)n*n, where n is the number of nodes in the network. dij=1 if vi and vj are adjacent, and dij=0, if vi and vj are not adjacent; i, j=1,2,..., n.
% trees: string of all trees
n=size(d,1);
e=sum(sum(d\=0))/2;
d1=zeros(1,e);
d2=zeros(1,e);
num=0;
for i=1:n-1
end
```
for j=i+1:n
 if (d(i,j)==0)
 num=num+1;
 d1(num)=i;
 d2(num)=j;
 end
 end
end

trees="; edge=zeros(1,e);
vmem=zeros(n*e,n);
emem=zeros(n*e,e);
tree=zeros(1,e);
vert=zeros(1,n);
for i=1:e
 edge(i)=1;
end
for i=1:n
 vert(i)=0;
end
k=1;
f=1;
s=0;
while (n>0)
 lab1=0; lab2=0;
 for j=1:e
 if (edge(j)==1) continue; end
 l=j;
 edge(j)=0;
 m=0;
 for i=1:e
 if (edge(i)==0) m=m+1; end
 end
 if (m>=(n-1))
 for i=1:e
 emem(f,i)=edge(i);
 end
 for i=1:n
 vmem(f,i)=vert(i);
 end
 f=f+1;
 end
 end
 edge(l)=-1;
 v1=d1(l);
 v2=d2(l);
 if (vert(v1)==0)
if (vert(v2)==0)
 vert(v1)=k;
 vert(v2)=k;
 k=k+1;
 lab1=1; break;
end
vert(v1)=vert(v2);
elseif (vert(v2)==0) vert(v2)=vert(v1);
else
 l=vert(v1);
 m=vert(v2);
 if ((l-m)==0) break; end
 if ((l-m)>0)
 t=m;
 m=l;
 l=t;
 end
 for i=1:n
 if ((vert(i)-m)==0) vert(i)=l; end
 if ((vert(i)-m)>0) vert(i)=vert(i)-1; end
 end
 k=k-1;
end;
for i=1:n
 if ((vert(i)-m)==0) lab2=1; break; end
end
if (lab2==1) break; end
s=s+1;
l=1;
for i=1:e
 if (edge(i)==-1)
 tree(l)=i;
 l=l+1;
 end; end
 trees=strcat(trees,'All links of tree No.',num2str(s),';
 for i=1:l-1
 trees=strcat(trees,'(',num2str(d1(tree(i))),',',num2str(d2(tree(i))),')');
 if (i==l-1) trees=strcat(trees,''); end
end
 trees=strcat(trees,'
 fprintf(trees)
end
if ((lab1==1) | (lab2==1)) continue; end
if (f==1) break; end
f=f-1;
for i=1:e;
edge(i)=emem(f,i);
end
k=0;
for i=1:n
vert(i)=vmem(f,i);
if (vmem(f,i)>=k) k=vmem(f,i);
end
k=k+1;
end

3 Application

Use DFS algorithm and the adjacency matrices of tumor pathways (Huang and Zhang, 2012; Li and Zhang, 2013; Zhang, 2016), the calculated tree in the p53 network is: (1,52),(52,4),(52,13),(52,15),(52,17),(52,19),(52,30),(52,48),(48,16),(16,18),(18,50),(50,20),(50,24),(24,47),(47,26),(47,32),(32,40),(40,42),(42,38),(38,41),(40,43),(47,33),(47,34),(47,35),(47,36),(47,37),(47,39),(47,44),(47,45),(47,46),(50,51),(51,49),(49,21),(49,23),(49,25),(49,27),(16,29),(29,31); for Ras tumor pathway, the calculated tree in the network is: (1,2),(2,3),(3,5),(5,4),(4,6),(4,8),(5,7),(5,9),(9,11),(11,13),(13,15),(15,17),(17,35),(35,33),(33,32),(32,31),(31,28),(28,26),(26,23),(23,21),(21,29),(29,30),(30,27),(32,34),(5,10),(10,12),(12,14),(12,19),(19,16),(16,18),(5,22),(22,20),(22,24),(5,25); for HGF pathway, the tree is: (1,2),(1,6),(6,8),(1,7), and for JNK tumor pathway, the searched tree is: (1,6),(6,5),(5,7),(7,9),(11,13),(13,8),(8,9),(13,10),(13,12),(13,14),(13,15),(13,24),(14,21),(21,26),(26,16),(26,22),(22,27),(27,28),(28,29),(29,30),(30,27),(32,34),(5,10),(10,12),(12,14),(12,19),(19,16),(16,18),(5,22),(22,20),(22,24),(5,25);

Use revised Minty algorithm and the adjacency matrix of p53 tumor pathway, the calculated trees (three trees are listed here) are as follows

Tree No.1:
(1,52),(2,5),(2,8),(2,10),(1,2),(2,14),(3,5),(4,5),(4,28),(4,52),(5,6),(5,7),(7,9),(11,13),(13,8),(8,9),(13,10),(13,12),(13,14),(13,15),(13,24),(21,26),(26,16),(26,22),(22,27),(27,28),(28,29),(29,30),(30,27),(32,34),(5,10),(10,12),(12,14),(12,19),(19,16),(16,18),(5,22),(22,20),(22,24),(5,25)

Tree No.2:
(1,52),(2,5),(2,8),(2,10),(1,2),(2,14),(3,5),(4,5),(4,28),(4,52),(5,6),(5,7),(7,9),(11,13),(13,8),(8,9),(13,10),(13,12),(13,14),(13,15),(13,24),(21,26),(26,16),(26,22),(22,27),(27,28),(28,29),(29,30),(30,27),(32,34),(5,10),(10,12),(12,14),(12,19),(19,16),(16,18),(5,22),(22,20),(22,24),(5,25)

Tree No.3:
(1,52),(2,5),(2,8),(2,10),(1,2),(2,14),(3,5),(4,5),(4,28),(4,52),(5,6),(5,7),(7,9),(11,13),(13,8),(8,9),(13,10),(13,12),(13,14),(13,15),(13,24),(21,26),(26,16),(26,22),(22,27),(27,28),(28,29),(29,30),(30,27),(32,34),(5,10),(10,12),(12,14),(12,19),(19,16),(16,18),(5,22),(22,20),(22,24),(5,25)
References