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Abstract 

A network may considerably change with certain nodes, links, flows, or parameters. To find the most 

important nodes, links, or other parameters to determine network structure or performance is of significant. 

Sensitivity analysis is originated from systems science. It explores the relationship between parametric change 

and systematic output, and is used to find important parameters in the system model. In principle, the 

sensitivity analysis used in systems science can also be extended to network analysis in which the model 

output means network output, network stability, network flow, network structure, or other indices, and model 

input means network nodes, network links, network parameters, etc. In present article, some methods for 

sensitivity analysis of systems / networks are described in detail. 
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1 Introduction 

Sensitivity analysis explores the relationships of, e.g., structure vs. stability, input vs. output, of various 

systems. It helps us understand the structural properties, dynamic mechanisms, key components (or nodes, 

links, parameters, etc.) and other aspects of systems. A variety of methods for sensitivity analysis of system 

models have been proposed (McKay et al., 1979; Downing et al., 1985; Morris, 1991; Saltelli et al., 1999, 

2000; Sobol, 1993; Xu et al., 2004). Networks are systems also. Like general systems, some networks can be 

described with mathematical models (Ferrarini, 2013, 2014, 2015). Many networks evolve naturally following 

some rules (Zhang, 2012a, 2015, 2016a, 2016c). To find the most important nodes, links, or other parameters 

that determine network structure or performance is of significant in network analysis. In present article, I will 

describe some methods for sensitivity analysis of systems / networks based on past studies. 
 

2 Methods 

2.1 Sensitivity analysis for systems analysis 
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There are two types of sensitivity analyses in systems analysis, local and global sensitivity analysis (Saltelli, 

2000). In the sensitivity analysis, a system is represented by a mathematical model. 

2.1.1 Local sensitivity analysis  

Local sensitivity analysis (LSA) is mainly used to analyze local influence of parameters on model output. 

Gradients of parameters vs. model output can be achieved by using LSA. LSA is valuable to systems with 

simple mathematical representations, fewer undeterministic parameters and easily derived sensitivity equation. 

LSA methods include directed derivation, finite difference, and Green function.  

2.1.1.1 Directed derivation 

For models with less independent variables and simple structure, directed derivation is a simple and rapid 

method for sensitivity analysis. Suppose the initial-value problem of a system is (Han et al., 2008) 

 

dy/dt=f(y, x), y(0)=y0                                                   (1) 

where y=(y1, y2,…, yn) is output vector, x=(x1, x2,…, xm) is the input vector, t is time. The sensitivity equation is  

 

       d(y/xi)/dt=A y/xi+ f/xi                                               (2) 

 

or  

       dS/dt=AS+C 

 

where S is the sensitivity matrix, A=(fj/yl) is the Jacobi matrix, C=(fj/xi) is the parametrical Jacobi matrix. 

Assume the network is time-invariant, i.e., f(y, x)=0. y can be obtained by solving the equation, f(y, x)=0. The 

static sensitivity matrix S with respect to xi is achieved as  

 

       S=-A-1C 

 

2.1.1.2 Finite difference 

In finite difference method, a perturbation of an input xj, ∆xj, is made to obtain derivative of output to xj. The 

forward difference scheme is usually used (Han et al., 2008) 

 

y/xi(y(xj)-y(x))/∆xi                            

           j=1, 2,…, m 

 

where xj=(x1, x2,···, xj−1, xj+∆xj, xj+1,···, xm). The more precise scheme, central-difference scheme is used also 

 

y/xi(y(xj+)-y(xj-))/(2∆xi)                                  (3) 

          j=1, 2,…, m 

 

where xj+=(x1, x2,···, xj−1, xj+∆xj, xj+1,···, xm), xj-=(x1, x2,···, xj−1, xj-∆xj, xj+1,···, xm). 

2.1.1.3 Green function 

The differential equation of Equation (1) with respect to the initial value y0 is (Han et al., 2008) 

 

      dS(t,t1)/dt=A(t) S(t,t1)                                       (4) 

 

where t, t1: perturbation time and observation time; x(t,t1): sensitivity matrix. S(t,t1)=(ci(t)/cj
0(t1)), S(t1,t1)=1,  
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tt1. The solution of sensitivity matrix is made of two parts, the general solution of homogeneous equation of 

equation (2), and the special solution of nonhomogeneous equation (2). The general solution of homogeneous 

equation of equation is obtained by using equation (3). And the special solution of nonhomogeneous equation 

is  

 

T(t1,t2)=∫t1
t2 S(t2,s) F(s)ds 

 

Local sensitivity analysis (LSA) is used to test model sensitivity to the change of a single specified 

parameter only, and the remaining parameters are fixed. LSA does not consider the influence of interactions 

between model parameters on model output.  

2.1.2 Global sensitivity analysis (GSA) 

Global sensitivity analysis (GSA) tests the joint influence of multiple parameters on model output, and analyze  

model sensitivity of both a single parameter and between-parameter interactions. It can be used in nonlinear, 

non-overlapping, or non-monotonous models. 

2.1.2.1 Qualitative GSA 

With less calculation, Qualitative GSA is used to rank parameters according to their sensitivities. 

(1) Multivariable regression method 

In this method, Latin hypercube sampling is used (McKay et al., 1979; Downing et al., 1985). It divides the 

cumulative probability distribution (i.e., the interval (0, 1)) of a parameter into multiple non-overlapping 

intervals of equal length along y-axis, and thus more effective than random sampling method. Each interval 

corresponds to an interval in x-axis. Randomly sampling a point in an interval of y-axis, we can obtain a 

corresponding parametrical value in an interval of x-axis. For the model with n parameters, each parameter has 

a cumulative probability distribution and m intervals are generated. In total of nm sampling combinations are 

thus produced.  

The procedure is that, the arrange values of n parameters into a matrix of nm, and randomize elements of 

each column, the m input of n parameters are thus obtained. Each row of the matrix can be taken as the input 

values of a parameter, and use them as model input to get model output. Finally, build multivariable regression 

between model outputs and inputs and use regression coefficients or partial correlation coefficients as the 

sensitivity values of corresponding parameters. Stepwise regression is more reliable in this method (Qi et al., 

2016; Zhang, 2016b). 

(2) Morris method 

Morris method (Morris, 1991; Xu et al., 2004) maps the domain of each parameter into [0, 1] and discretizes 

the interval, such that each parameter takes values in {0,1/(p-1),2/(p-1),...,1}, where p is the number of 

sampling points of the parameter. Each parameter takes values randomly from p sampling points and obtains a 

vector X=(x1, x2,…, xk), where k is the number of parameters. 

   Consider a matrix, B=(bij)(k+1)k, (bij=1, if i<j; bkk=0, bkj=1, if j<k; bk+1j=1; otherwise, bij=0) and the change 

=s/(p-1), where s is the constant. Use the adjacent two rows in the matrix B as the model input and obtain 

two outputs y1 and y2. The sensitivity of parameter i can be calculated by i(X)=(y1-y2)/. Take k pairs of 

adjacent rows as mode inputs, we may obtain sensitivities of k parameters (Xu et al., 2004). 

   Values of elements in B are not stochastic. Thus in practical application, we can use a stochastic process 

to ensure the stochasticity of elements’ values (Xu et al., 2004) as the following: suppose D*
kk is a diagonal 

matrix, in which any element has the same chance as 1 and -1. Suppose Jmk is the unit matrix. Each column of 

elements of matrix Cmk=(1/2)[(2B-Jmk)D
*+Jmk] are equal to corresponding elements in B (or 1 change to 0, 

or 0 change to 1 in B); suppose X* is the base vector of X. Each parameter in X randomly takes values in 
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{0,1/(p-1),2/(p-1),...,1}, and suppose P*
kk is the random permutation matrix in which each row and each 

column contains one 1 only and others are zeros. Let B*=(Jm1X
*+(/2)[(2B-Jmk)D

*+Jmk])P
*, B* is the 

stochastic matrix of B. Use the adjacent two rows in the matrix B* as the model input and obtain two outputs y1 

and y2. The sensitivity of parameter i can be calculated by i(X)=(y1-y2)/. Replications can be made to obtain 

the mean sensitivity and its standard deviation of each parameter. A less standard deviation means a little 

interaction between the parameter and other parameters. 

   Morris method can be used to freeze less sensitive parameters and further made to make quantitative GSA. 

2.1.2.2 Quatitative GSA 

Quantitative GSA can quantitatively calculate the contribution proportion of uncertainty of model parameters 

to uncertainty of model output. It holds that variance of model output represents the uncertainty of model 

output. Before making quatitative GSA, qualitative GSA is always used to filter the less sensitive parameters 

from the model.  

(1) Sobol method 

A representative method of quatitative GSA is Sobol method (Sobol, 1993; Xu et al., 2004; Han et al., 

2008). Sobol method is a Mont Carlo method based on variance. 

Suppose the model is y=f(x), x=(x1, x2,…, xk). xi follows uniform distribution of [0,1], and (f(x))2 is 

integrable. First, define a k-dimensional unit cube as the space domain of parameters, Ω={x|0≤xi≤1;i=1,2,…,k}. 

The core procedure of Sobol method is to decompose the function f(x) into the sum of sub-terms 

 
              k 

       f(x)= f0+ fi(xi)+  fij(xi,xj)+…+f1,2,…,k(x1, x2,…, xk)            (5) 
                i=1        i<j 

The decomposition above is not unique. If  

 

 ∫0
1 fi(xi)dxi=0, xi, i=1,2,…,k 

 ∫0
1∫0

1 fij(xi,xj)dxidxj=0, xi,xj, i<j 

 ∫Ωf1,2,…,k(x1, x2,…, xk)dx1dx2…dxk=0 

 

the decomposition (5) is unique, and  

 

 ∫Ωfi1,i2,…,isfj1,j2,…,jldx=0, (i1,i2,…,is)(j1,j2,…,jl), k=s+l 

 

Calculate  

 

       f0=∫Ωf(x)dx 

       fi(xi)=-f0+∫0
1…∫0

1f(x)dx-i, i=1,2,…,k 

       fij(xi,xj)=-f0-fi(xi)-fj(xj)+∫0
1…∫0

1f(x)dx-ij, i<j 

 

where x−i and x−ij represent the parameters in exception of xi and xi together with xj, respectively. Similarly, we 

can get f1,2,…,k(x1, x2,…, xk). The total variance of model output, i.e., the effect of all parameters on model 

output, is  

        

       V=∫Ω(f(x))2dx-(f0)
2 

 

The effect of a single parameter on model output is represented by its partial variance  
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       Vi=∫(fi)
2dxi 

 

And the joint effect of several parameters on model output is represented by the partial variance 

 

Vi1,i2,…,is=∫0
1…∫0

1(fi1,i2,…,is)
2dxi1dxi2...dxis 

 

Square equation (5) and thereafter make integration, we have  

 
           k 

        V=Vi+Vij+…+V1,2,…,k 
          i=1    i<j 
 

and  

 

        Si1,i2,…,is=Vi1,i2,…,is/V                                  (6) 

 

where Si is the sensitivity of parameter i, known as 1st sensitivity; Si1,i2,…,is is the joint sensitivity of interactive 

parameters i1,i2,…, and is, known as sth sensitivity. 

   The integrals above can be solved using Monte Carlo method, i.e. 

 
           n 

        f0= f(xi)/n 
          i=1     
           n 

        V=(f(xi))
2/n-(f0)

2 
          i=1     
           n 

        Vi=f(xij
(1),x-ij

(1)) f(xij
(1),x-ij

(2))/n-(f0)
2 

           j=1     
        … 

 

(2) Extended Fourier Amplitude Sensitivity Test (EFAST) 

Extended Fourier Amplitude Sensitivity Test was proposed by Saltelli et al. (1999). In this method, the 

spectrum of Fourier series is obtained by Fourier transformation. The variances of model output aroused from 

a single parameter and parameter interactions are calculated from frequency spectrum curve (Tarantola et al., 

2002;Xu et al., 2004). 

The model y=f(x), x=(x1, x2,…, xk). can be transformed to y=f(s) using a certain search function. The 

Fourier transformation is  

 
                

         y=f(s)=(Ajcos(js)+Bjsin(js)) 
              j=-     
where s is the independent parameter of all parameters, and 

 

         Aj=(1/(2))∫-
f(s)cos(js)ds 

         Bj=(1/(2))∫-
f(s)sin(js)ds 

           jZ={-,…,-1,0,1,…,} 

   Frequency spectrum curve of Fourier series is j=Aj+Bj, where A-j=Aj, B-j=Bj, -j=j. The variance of model 
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output aroused from uncertainty of xi is  

 
         Vi=2pwi                                       (7) 
            p=1     
 

where wi is a specified frequency. The total variance is  

 

 
         V=2p                                         (8) 
            p=1     
Take s in the [-,] with the same interval, and input each sampled parameter to the model. Run the model 

many times, and Aj and Bj can be obtained from 

 
            Ns 

         Aj= f(sk)cos(jsk) 
           Sk=1     
            Ns 

         Bj= f(sk)sin(jsk) 
           Sk=1     
             jZ’={-(Ns-1)/2,…,-1,0.,1,…,(Ns-1)/2} 

 

where Ns is the number of samples, Ns=2Mwmax+1. Finally, based on equation (6)-(8), we can get sensitivity of 

each parameter. 

   EFAST costs much lower than Sobol. Both EFAST and Sobol require parameters are irrelevant from each 

other. 

2.2 Sensitivity analysis for networks 

The above methods can be used in network analysis also. In network analysis, the model output in above 

methods means network output, network stability, network flow, network structure, or other indices we 

specified, and model input means network nodes, network links, network parameters, etc. 

Zhang (2012a, b) proposed a series of methods for determination of crucial nodes, which can be used in 

sensitivity analysis also, for example, Node Perturbation index (NP) (Zhang, 2012b) 

 

NP=dN/dn/N 

or 

NP=dN/dn 

 

where N: measure of network structure; n: state value or proportion of a known node in the network. There are 

many measures of network structure, i.e., total links, total number of nodes, network flow (Latham, 2006), 

degree distribution (Zhang, 2011; Zhang and Zhan, 2011), aggregation index, coefficient of variation, entropy 

(Zhang and Zhan, 2011; Zhang, 2012a), and other measures (Paine, 1992; Power et al., 1996; Dunne et al., 

2002; Montoya and Sole, 2003; Allesina et al., 2005; Barabasi, 2009). More methods that can be used in 

sensitivity analysis of networks, e.g., adjacency matrix index, flow change index, etc., have been discussed in 

Zhang (2012b) and other references. 
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