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Abstract 

In most of the link prediction methods, all predicted missing links are ranked according to their scores. In the 

practical application of prediction results, starting from the first link that has the highest score in the ranking 

list, we verify each link one by one through experiments or other ways. Nevertheless, how to find an 

occurrence pattern of true missing links in the ranking list has seldomly reported. In present study, I proposed 

a mathematical model for relationship between cumulative number of predicted true missing links (y) and 

cumulative number of predicted missing links (x): y=K(1-e-rx/K), where K is the expected total number of true 

missing links, and r is the intrinsic (maximum) occurrence probability of true missing links. It can be used to 

predict the changes of occurrence probability of true missing links, assess the effectiveness of a prediction 

method, and help find the mechanism of link missing in the network. The model was validated by six 

prediction methods using the data of tumor pathways.  

 

Keywords mathematical model; missing links; prediction; occurrence probability; tumor pathways.  

 

 

 

 

 

 

 

 

 

1 Introduction 

Link prediction is conducted to estimate the likelihood of the existence of a link between two nodes based on 

observed links and (or) the attributes of nodes (Zhang, 2015d; Zhou, 2015), which is expected to reduce the 

experimental costs for link finding. So far, numerous research on link prediction have been conducted (Clauset 

et al., 2008; Guimera and Sales-Pardo, 2009; Lü and Zhou, 2011; Lü et al., 2012; Barzel and Barabási, 2013; 

Bastiaens et al., 2015; Lü et al., 2015; Zhang, 2007, 2011, 2012a-c, 2013, 2015a-d, 2016a-d; Zhang and Li, 

2015; Zhao et al., 2015; Zhou, 2015). Known so many prediction methods, each of them has its own 

mechanism for link generation, and their predictions for the same dataset are diverse. For example, the random 

perturbation method of Zhang (2016a) was developed based on degree growth of scale-free. Power-law 

generation method assumed that the degree of most networks is power-law distributed and power-law 

Network Pharmacology   
ISSN 24151084   
URL: http://www.iaees.org/publications/journals/np/onlineversion.asp 
RSS: http://www.iaees.org/publications/journals/np/rss.xml 
Email: networkpharmacology@iaees.org 
EditorinChief: WenJun Zhang 
Publisher: International Academy of Ecology and Environmental Sciences 



Network Pharmacology, 2016, 1(4): 86-94 

 IAEES                                                                                     www.iaees.org

distribution was used to fit degree distribution and predict msiing links (Zhang, 2016c). CN was based on 

common neighbors of two links (Lorrain and White, 1971). In most of the link prediction methods, all 

predicted missing links are ranked based on their scores. In the application of prediction results, starting from 

the first link, we usually verify each link through experiments or other ways. How to find an occurrence 

pattern of true missing links in the ranking list for reducing verification cost has seldomly reported. In present 

study, I tried to propose a mathematical model for relationship between cumulative number of predicted true 

missing links and cumulative number of predicted missing links in order to further enhance prediction 

efficiency and identify the mechanism of link missing. 

 

2 Methods 

2.1 Mathematical model 

In the most of prediction methods for missing links, for a link being predicted, calculate the score (likelihood, 

probability, etc. A higher score means the greater probability of being a true missing link) of the link using the 

prediction method, and rank all predicted missing links according to their scores, from greater to smaller ones. 

The top links in the ranking list are more likely true missing links. The ranking list is always stored in a file 

with three columns, A, B and C. A stores IDs of “from” nodes, B stores IDs of “to” nodes, and C stores scores 

of predicted missing links.  

First, define the occurrence probability of true missing links as  

 

p=dy/dx                           (1) 

 

where y is the cumulative number of predicted true missing links, and x is the cumulative number of predicted 

missing links, starting from the 1st predicted link with the highest score in the ranking list. A preceding link in 

the ranking list is more likely a true missing link than its succedent links. As a consequence, the occurrence 

probability of true missing links, p, will decline (from the intrinsic occurrence probability, i.e., maximum 

occurrence probability, r) to zero as the increase of cumulative number of predicted true missing links (y) 

until the expected total number of true missing links, K, is achieved. Therefore, as the first-order 

approximation of equation (1), let 

 

          p=r(K-y)/K                        (2) 

 

and we have  

 

dy/dx=r(K-y)/K                     (3) 

 

where K>0, 0<r1. Solving equation (3), the mathematical model for relationship between cumulative number 

of predicted true missing links (y) and cumulative number of predicted missing links (x) is achieved as 

 

y=K(1-e-rx/K)                       (4) 

 

According to the model (4), the cumulative number of predicted true missing links (y) increases as the increase 

of predicted missing links (x) in the ranking list, and tends to an asymptote, i.e., expected total number of true 

missing links, K (Fig. 1).  

Model (4) can be used to predict the changes of occurrence probability of true missing links in the ranking 
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list. Based on the model (4), the expected total number of true missing links, K, and the intrinsic occurrence 

probability of true missing links, r, can be obtained by using data fitting.  

The following are Matlab codes, linkPredModel.m, to obtain the relationship between y and x and the 

numerical method to obtain K and r by fitting relationship between y and x 

 

scores=input('input the excel file name of scores: ','s'); 

misslinks=input('input the excel file name of missing links: ','s'); 

scores=xlsread(scores); misslinks=xlsread(misslinks);  

n=size(scores,1); m=size(misslinks,1); 

scores=sortrows(scores,-3); 

x=1:n; 

y=zeros(1,n); 

ma=0; 

for i=1:n 

for j=1:m 

if ((scores(i,1)==misslinks(j,1)) & (scores(i,2)==misslinks(j,2))) y(i)=ma+1; ma=y(i);break; end 

if ((scores(i,1)==misslinks(j,2)) & (scores(i,2)==misslinks(j,1))) y(i)=ma+1; ma=y(i); break; end 

end 

y(i)=ma; 

end 

plot(x,y,'-'); 

xlabel('Cumulative number of predicted missing links (x)'); 

ylabel('Cumulative number of predicted true missing links (y)'); 

disp('Cumu. number of predi. missing links (x)      Cumu. number of predi. true missing links (y)') 

[x'   y'] 

k=input('Input the estimated value of parameter K (e.g., 15): '); 

r=input('Input the estimated value of parameter r (e.g., 0.1): '); 

sig=input('Input the significanc level (e.g., 0.01): '); 

beta=[k r];   

[beta,R,J,SIGMA,MSE]=nlinfit(x,y,@predictfunction,beta); 

K=beta(1) 

r=beta(2) 

deltabeta=nlparci(beta,R,J); 

fitted=predictfunction(beta,x); 

chi_square=sum((y-fitted).^2./fitted) 

p=chi2cdf(chi_square,n-2) 

if (p<sig) disp('The data fit model well at the given significanc level.');  

else disp('The data is not able to fit model at the given significanc level.');  

end 

 
The following is the function predictFunction.m 

 

function f=predictfunction(beta,x) 

f=beta(1)*(1-exp(-beta(2)/beta(1)*x)); 
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supplementary material). Links are removed from tumor pathways and the remaining (see 

missinglinkspathwayname.xls and pathwayname_Training.xls in supplementary material) is used to generate 

the training adjacency matrix.  

Missing links are removed from original pathways following the inverse evolution process of the networks 

with power-law degree distribution. Therefore, the links missed following a known mechanism and the 

power-law based nethods (Zhang, 2016c), in particular, random perturbation (Zhang, 2016a) are the methods 

featured by this mechanism. Most networks have the degree distribution of power-law (Barabasi and Albert, 

1999; Zhang, 2012a, 2016a, 2016c). For network evolution based link prediction, it is a reasonable and exact 

treatment.  

   The prediction results of missing links in tumor pathways, by six methods, can be found in separate 

directories of supplementary material (PrediScores_methodname.xls).  

 

3 Results 

3.1 Validation of the mathematical model 

Compared with Fig. 1 and Fig. 2, a general coincidence between theoretical curve and observed curves can be 

founded. As indicated in Table 1, parameter fitting and statistic test further validate the mathematical model (4) 

that describes the relationship between cumulative number of predicted true missing links (y) and cumulative 

number of predicted missing links (x). In addition, the results show that the parameter r is more reliable than 

K.  

 

 

Table 1 Model fitting and statistic test of missing link predictions of six methods for five tumor pathways. 

Pathways 
Model para./Chi 

square 

Random 

perturbation

Power-law 

generation
CN AA RA Katz 

FAS (L=12 true 

missing links 

K 

r 

χ2 

9.2480 

0.0458 

330.5661**

28.2614 

0.0177 

92.2104**

-2.6109 

0.0141 

57.1607**

1.2109 

0.0142 

169.0797 

1.2109 

0.0142 

169.0797 

4.0375 

0.0190 

61.7429**

JAK-STAT (L=11 

true missing links 

K 

r 

χ2 

7.2210 

0.0158 

36.1173** 

13.9050 

0.0250 

54.3138**

3.8933 

0.2368 

5.3417** 

4.1197 

0.2042 

20.6666** 

4.1197 

0.2042 

20.6666** 

5.2106 

0.0070 

139.9072**

JNK (L=16 true 

missing links 

K 

r 

χ2 

16.0194 

0.1672 

43.4027** 

21.8450 

0.0347 

127.4522**

2.2015 

0.0359 

12.1910**

4.4009 

0.0147 

21.7042** 

5.5020 

0.0138 

21.3651** 

6.8105 

0.0172 

695.3245*

MARK (L=15 true 

missing links 

K 

r 

χ2 

3.2105 

0.0104 

117.8132**

4.9106 

0.0119 

71.5835**

2.2247 

0.0460 

36.0525**

2.1745 

0.0296 

69.4835** 

2.1745 

0.0296 

69.4835** 

15.7222 

0.0122 

496.0534**

p53 (L=13 true 

missing links 

K 11.2094 15.0853 1.71010 3.0554 3.0530 6.8874 

r 

χ2 

0.0788 

59.8453** 

0.0163 

653.3348**

0.0039 

56.2755**

0.2080 

6.8479** 

0.2250 

7.4530** 

0.0327 

26.0670**

       **: p<0.01; *: p<0.05. 

 

90



Network Pharmacology, 2016, 1(4): 86-94 

 IAEES                                                                                     www.iaees.org

 

 
Fig. 2 Fitted and observed relationships based on model (4) (●●●: observed; ▬: fitted). 

 

 

Table 2 Summary of prediction results of six methods for missing links in five tumor pathways. 

Pathways Type of links 
Random 

perturbation
Power-law 
generation

CN AA RA Katz 

FAS  
Predicted missing links (n) 
Predicted true missing links (S) 

640 
9 

866 
11 

105 
1 

105 
1 

105 
1 

386 
3 

JAK-STAT 
Predicted missing links (n) 
Predicted true missing links (S) 

545 
5 

613 
9 

76 
4 

76 
4 

76 
4 

736 
6 

JNK  
Predicted missing links (n) 
Predicted true missing links (S) 

612 
16 

709 
16 

201 
2 

201 
2 

201 
2 

759 
12 

MARK 
Predicted missing links (n) 
Predicted true missing links (S) 

819 
8 

1006 
11 

133 
2 

133 
2 

133 
2 

1166
9 

p53 
Predicted missing links (n) 
Predicted true missing link (S) 

539 
12 

1067 
13 

142 
3 

142 
3 

142 
3 

406 
6 
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Fig. 3 Comparisons of relationships between six methods under five tumor pathways (●●●: Power-law generation; ▬▬▬: 
Random perturbation; ▬●▬: Katz; ▬ ▬ ▬: CN; ───: RA; ─·─: AA). For FAS and JNK prediction, Random perturbation is 
significantly better than other methods, with the larger r values (steeper and earlier sprouted curves) and overall the larger total 
number of predicted true missing links than other methods, in exception of Power-law generation. 
 

 

3.2 Judgement of prediction methods and discovery of link missing mechanism 

A comprehensive survey on Table 1, Table 2 and Fig. 2, in terms of r and total numer of true missing links S, 

proves that Random perturbation performs significantly better than other methods, seconded by CN. The 

curves of Random perturbation (Fig. 2) are more similar to the theoretical curve in Fig. 1. The mechanism of 

link missing in Random perturbation is forseeablly the true mechanism. 
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4 Discussion 

I guess that the pattern described by model (4) may has resulted from power-law distribution of true missing 

links in the ranking list, i.e., the occurrence probability of true missing links in the ranking list follows the 

power-law distribution.  

Most of prediction methods were based on static topological structure only. Network evolution based 

(Zhang, 2012a, 2012c, 2015a, 2016b, 2016e), node similarity based (Zhang, 2015d), and sampling based 

(correlation based; Zhang, 2007, 2011, 2012b, 2013, 2015b; Zhang and Li, 2015) methods are used also. 

Model (4) in present study is suitable to predictions of all these types of methods. 

To simply obtain K, we may carefully choose three points, (x1, y1), (x2, y2), (x3, y3), where x3-x2=x2-x1. 

Derived from equation (3), we have the estimate of K as the following 

 

K=(y2y2-y1y3)/(2y2-y1-y3) 

 

However, a sound method to obtain K and r from data fitting is urgently needed.  
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