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Abstract 

Tumorigenesis is a multifactor and multistep process, of which the change of metabolic signaling pathways 

plays a key role. Most of the previous studies on tumor signaling pathways focused mainly on the metabolic 

process and chemical processes of some selected metabolites, the tumorigenesis induced by abnormal 

signaling from mutation of this metabolite or gene, and the chemical structure of ligands, receptors and 

signaling proteins. However their network biology is seldom studied. Based on the previous studies, the 

present study was conducted to further analyze the topological structure of tumor signaling pathways using 

Pajek and UCINET software. Some critical metabolites were found and sensitivity analyses for signaling 

pathways were conducted. Centrality and core skeleton analysis showed that the crucial metabolites of AKT 

signaling pathway are Akt-p and Akt; the crucial metabolites of JAK-STAT signaling pathway are JAKs and 

23(STATs-P)2; the crucial metabolites of p53 signaling pathway are p53-P-P, Gene Expression, Ac-p53 and 

(Ac-p53-P)2; the crucial metabolites of Ras signaling pathway are Ras-GTP, Ras-GDP and MEKK1; the 

crucial metabolites of TNF signaling-pathway are MEKIKs-P-NIK-P and TRADD, and for VEGF signaling 

pathway, the crucial metabolites are PIP3 and ANGIOGENESIS. The performance of cascade model was poor 

in predicting topological properties of tumor signaling pathways. 
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1 Introduction 

The completion of the Human Genome Project indicated the arrival of the post-genome era. The focus of 

biological research has shifted from the local research on the function of individual genes or proteins in cells to 

various "omics" research that take all the genes, mRNAs, proteins and metabolites in the cell as the research 

objects, that is, holistic research. Various omics technologies such as metabolomics, genomics, proteomics, 

and transcriptomics have gradually pushed molecular biology into the era of systems biology, and also brought 

bioinformatics into the post-genomic informatics era. Since genes and proteins tend to affect the function of 

biological systems through network-like interactions in groups, it is necessary to analyze their interaction 
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networks to study biological functions (Zhang, 2012a, 2016b, 2018). 

In the biological studies, the following four network types were generally defined and used, i.e., 

protein-protein interaction networks, metabolic networks, transcriptional regulatory networks and signal 

transduction networks. Networks (graphs) represent different interaction types between biological entities 

(such as transcription factors, genes, small chemical molecules, and proteins, etc.), nodes represent biological 

entities, and edges (links) between nodes represent their interactions. In addition, networks (graphs) can also 

be divided into directed graphs and undirected graphs according to the attributes of the links in the network, or 

divided into Bayesian networks and Boolean networks according to the representational meaning of the links 

in the network, or according to the distribution of node degrees in the network they are divided into 

homogeneous network and "scale-free" networks (Aittokallio and Schwikowski, 2006; Zhang, 2012a, 2018). 

Generally speaking, we often carry out computational analysis of biological networks from the following 

three aspects: (1) Research on network statistics and topological properties, including node centrality, 

aggregation coefficient, betweenness centrality, node degree distribution, and the relationship between nodes 

(Zhang, 2018). In addition, robustness analysis of the network based on the shortest path and random removal 

of individual nodes, etc (Zhang, 2016d); (2) modularity analysis, which refers to identifying sub-graphs 

(sub-networks) of interconnected nodes with functionally or regionally specific connections in the network 

(Zhang, 2016c, 2018), such as a specific disease module or specific metabolic pathway module; (3) elemental 

analysis, which refers to the identification of small network modules that overlap with it when compared with 

a graph formed by random shuffling of nodes in the same network, often used for regulatory networks such as 

the graphical analysis of discrete biological processes. In addition, network graphs that characterize the 

interaction types of the same biological entity can be superimposed and compared to find their common 

components. For example, protein-protein interaction networks of different biological origins are 

superimposed to identify their possible evolutionary relationships (Pujol et al., 2010). 

Numerous studies have proved that the position of a node in the topology of a biological network is related 

to its importance in intracellular functions (Zhang, 2012a, 2018). Changes in the external environment or 

internal conflicts acting on nodes with different topological properties will cause the network to exhibit 

different degrees of robustness or fragility (Albert et al., 2000; Jeong et al., 2001; Zhang, 2016d, 2018). Burst 

interference acts on random nodes in the network and has little impact on the network, because the failure of 

random selection mainly occurs in most non-critical nodes, and their absence generally does not destroy the 

overall characteristics of the network. At this time, the network shows robustness (Zhang, 2016d; Zhang and 

Feng, 2017). When crucial structures of the network are destroyed, the removal of a few crucial nodes will 

split the system into some small and isolated groups of nodes, and it is even possible to observe the phase 

transition of the system and the disintegration of the entire network, which is a manifestation of network 

vulnerability (Zhang, 2016b, 2018). 

The research on crucial nodes of biological networks is mainly aimed at the evaluation of node centrality 

and the impact of removal on network structure and function. Specifically, identifying important nodes in a 

network has a series of computational metrics of topological properties. Two of the more important measures 

of topological properties are node degree distribution and aggregation coefficient (Zhang, 2018). The node 

degree distribution represents the different number of links connected by any node in the network, and the 

clustering coefficient represents the ratio of the number of adjacent nodes that a node actually connects to the 

maximum number of nodes it can connect to. The calculation criteria of these topological properties can 

effectively reflect the characteristics of the network structure (Zhang, 2018). For example, in the 

protein-protein interaction network, we found that the degree distribution of the network nodes conforms to the 

power-law type (Huang and Zhang, 2012), which belongs to the scale-free network, that is, in the network 
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most of the nodes are only connected to very few nodes, and very few nodes are highly connected. In addition, 

other common topological properties are degree centrality, which is used to measure the degree of a node in 

the path, and betweenness centrality, which is used to analyze the influence of the node on the flow of network 

information, and closeness centrality, which is used to measure the degree of deviation of a node from the 

center of the graph (Zhang, 2018; Zhang and Zhang, 2019; Xin and Zhang, 2020). 

Metabolism is at the end of the regulation of life activities and is the chemical engine that drives life 

processes, generating energy to drive various cellular processes, degrading and synthesizing many different 

molecules. Metabolic network expresses all biochemical reactions in cells as a network, which reflects the 

interaction between all compounds involved in metabolic process and between all catalytic enzymes, and is an 

abstract expression of cell metabolism. The most important chemical feature of tumor cells is unrestricted 

rapid reproduction. In order to meet the needs of their rapid reproduction, tumor cells exhibit metabolic 

characteristics different from those of normal tissue cells. 

The occurrence of tumor is a multifactor and multistep process. Among them, changes in cell signal 

transduction pathways play a key role (Rahman et al., 2013; Iqbal et al., 2014). Intracellular signaling 

pathways are closely related to the regulation of metabolic networks and affect the process of tumor 

metabolism (Ibrahim et al., 2011). Tumor signaling metabolism has become a hot research area today, and the 

research on tumor signaling pathways is relatively comprehensive. The tumor signaling pathways are mainly 

divided into several types: Akt, JAK-STAT, p53, Ras, TNF, and VEGF signaling pathways, etc (Kolch , 2002; 

Moustakas et alo., 2002; Katoh , 2005; Marrero, 2005; Stauffer et al., 2005; Ho et al., 2006 ). 

These signal pathways are the main pathways of tumor signal metabolism, among which there are a variety 

of important ligands, receptors or signal proteins that affect each signal metabolism process, forming a 

complex network. 

Existing tumor metabolism research mainly focuses on the metabolic pathway process and chemical 

process at a certain point of tumor signal metabolism, the process of inducing cancer caused by abnormal 

signal due to mutation, and the crucial ligands and receptors in the tumor signaling pathways and entire 

metabolic pathway. 

Although there is no complete database on tumor signaling pathways, the two known websites on tumor 

signaling pathways provide reliable signaling pathway maps related to signaling pathways, which can be used 

for tumor signaling and metabolic network analysis. The original data sources are very reliable, and these 

metabolic pathways have been thoroughly studied, and the metabolic directions of metabolites and signals at 

each node are very clear. 

Studies have shown that in the regulation of tumor metabolism, certain enzymes have the effect of 

affecting cell proliferation. And these nodes may be the most vulnerable control points in the metabolic 

network. Therefore, research on these nodes is crucial. 

The tumor signaling pathways are an important research area, and there are few studies on this aspect 

(Huang and Zhang, 2012; Li and Zhang, 2013). Studying the tumor signaling pathways can help us better 

understand and utilize the metabolic process of tumor cells. Knowing the topological properties of the tumor 

metabolic network is essential to understand its dynamic behavior, biological function realization and 

characteristics. In present study, the relevant data of the above six signaling pathways were based, and Pajek 

software was used to conduct centrality analysis, network core skeleton analysis and cascade model analysis 

on tumor signaling pathways, so as to provide a useful and credible basis for future research on tumor 

signaling pathways. It is expected to provide valuable information for tumor diagnosis and treatment and 

tumor drug design from the perspective of network biology. 
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2 Software and Data Sources 

2.1 Introduction to UCINET software 

UCINET integration software for network analysis includes NetDraw for one-dimensional and 

two-dimensional data analysis, as well as Mage, the software for three-dimensional display analysis under 

development, and Pajek's Free application software for large-scale network analysis. UCINET software can 

read text files, KrackPlot, Pajek, Negopy, VNA and other formats of data files. It can handle 32767 network 

nodes. Of course, from the practical point of view, when the number of nodes exceeds 5000 or so, some 

algorithms will run very slowly. The package has strong matrix analysis functions, such as matrix algebra and 

multivariate statistical analysis. Network analysis methods in the software include centrality analysis, 

subgroup analysis, role analysis, and permutation-based statistical analysis (Borgatti et al., 2011; Jiang et al., 

2015; Zhang, 2012a-b, 2016a-b, 2018). 

2.2 Pajek software 

The Pajek software was written by Vladimir Batagelj and Andrej Mrvar and is freely available to users for 

non-commercial use. Pajek means spider in Slovenian, and the logo of the software is a spider, implying that it 

has the function of drawing a network (Kuang and Zhang, 2011; Jiang et al., 2015). 

Pajek is a software for analyzing large and complex networks and is a powerful tool for studying various 

complex nonlinear networks that exist today. Pajek provides analysis and visualization manipulation tools to 

the following networks: Coauthoring Network, Chemical Organic Molecules, Protein Receptor Interaction 

Network, Genealogy, Internet, Citation Network, Communication Network (AIDS, News, Innovation), Data 

Mining (2-mode), etc. Pajek runs under Windows for analysis and visualization of large networks with 

thousands or even millions of nodes. It has the characteristics of fast calculation, visualization and abstraction. 

2.3 Data sources 

The original data of this study came from the two websites of providing tumor signaling pathways (Pathway 

Central, 2012): 

http://www.sabiosciences.com/pathwaycentral.php 

http://www.abcam.com/index.html?pageconfig=productmap&cl=2282 

2.4 Data conversion 

Tumor metabolism maps describe all metabolites and signaling pathways related to tumor metabolism, and 

these metabolic pathways are directional. Although the map is intuitive, it does not determine the order and 

associations of the various metabolites in the metabolism. For the convenience of research, firstly, according to 

the original data map, all the metabolites in the map are numbered, and each metabolite is a node (all entities, 

behaved as nodes in the pathways, are treated as metabolites in present study). Then in Excel, the starting node 

is listed as rows and ending nodes as columns. The association (i.e., interaction) between the two metabolites 

is recorded as 1, and non-association between the two metabolites is recorded as 0, and the metabolic map data 

is thus converted into matrix data. After the data conversion, open the Data/data editors/matrix editor in the 

UCINET software, import the Excel data, and then store it in the .##h format through the “Save as” in the 

MatrixEditor, and then select it through the Netdraw software File/Open/Ucinet dataset/network and open the 

file in ##h format that was just stored, and then save it as a file in .net, .clu, .vec and other formats through 

File/save data as/Pajek/net file. These documents constitute Pajek's basic analysis source documents. 

 

3 Methods 

3.1 Centrality analysis of tumor signaling pathways 

The centrality of a metabolite can measure the relative importance of the metabolite in the network. Here we 

use three centrality measures: degree centrality, betweenness centrality and closeness centrality (Wasserman 
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and Faust, 1994; Zhang and Zhan, 2011; Shams and Khansari, 2014; Zhang, 2012a-b, 2016a-b, 2018, 2021; 

Zhang and Feng, 2017; Zhang and Zhang, 2019; Xin and Zhang, 2020, 2021; Yang and Zhang, 2022). 

3.1.1 Degree Centrality (DC) 

In the metabolic network, if a metabolite is directly related to many other metabolites, the metabolite plays a 

central role in metabolism. Central metabolic signals often have many associations with other signals, while 

peripheral metabolic signals often do not have such characteristics. Therefore, calculating the degree centrality 

of metabolites can measure the importance of metabolites. Degree centrality is the simplest and least 

informative measure, it only considers the number of other metabolites connected to metabolite i: 

 

                                                                                   , + ,  

 

where Din,i is the in-degree of metabolite i, Dout,i is the out-degree of metabolite i. We use Net/Partitions/DC/All 

in Pajek to calculate DCi. 

3.1.2 Betweenness Centrality (BC) 

If many metabolic pathways pass through a certain metabolite, it can be considered that this metabolite has a 

very important position, because it has the ability to control the connection of other metabolites, which is quite 

a bridge. A metabolite is said to have a high betweenness centrality if it is in the shortest path of many other 

metabolite pairs. Betweenness centrality can be obtained by calculating the probability that metabolite i 

appears on the shortest path of each pair of metabolites j and k. The standard BC is represented by: 

 

2 ∑ /
1 2

 

where i≠j≠k, gjk is the shortest path between metabolites j and k, gjk(i) is the number of the shortest paths 

containing metabolite i, N is the total number of metabolites in the network. 

3.1.3 Closeness Centrality (CC) 

Degree centrality describes the local centrality of a metabolite, and measures the associations (i.e., interactions, 

connections) between the metabolite itself and other metabolites, regardless of whether it can control the 

associations between other metabolites. Betweenness centrality takes into account the ability of a metabolite to 

control associations between other metabolites, but not the degree to which it is controlled by other metabolites. 

Considering the degree to which a metabolite is controlled by other metabolites, if a metabolite in the network 

is less dependent on other metabolites in the process of interacting with other nodes, the metabolite has a 

higher centrality. Since metabolites at non-core positions need to pass other metabolites to transmit 

information, metabolites at core positions are less dependent on other metabolites when transmitting metabolic 

signals. Therefore, the closeness of this metabolite to other metabolites should be considered. The closer a 

metabolite is to other metabolites, the less dependent it can be on others. Closeness centrality can be obtained 

by calculating the shortest path from metabolite i to other metabolites: 

 
1

∑
 

 

where i≠j, dij is the length of the shortest path between metabolites i and j. 

We use Net/Vector/Centrality/Betweenness and Net/Vector/Centrality/Closeness/All in Pajek to calculate 

BCi and CCi. 
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3.2 Core skeleton analysis of tumor signaling pathways 

By comparing the topological structures of removing important metabolites, random metabolites, a large 

number of common metabolites and the complete network, it is further verified whether the metabolites with 

large centrality are crucial metabolites (Jiang and Zhang, 2015; Zhang and Feng, 2017). Referring to Kuang 

and Zhang (2011), the results of node analysis, link analysis and chain length analysis are selected for 

comparison. The important metabolites to be removed are the metabolites with large DC, BC, and CC values, 

and the random metabolites are obtained by the RANDBETWEEN function in MS Excel. In addition, in the 

presence of important metabolites and their interconnections, removing a large number of common metabolites 

(one third of the total number of common metabolites) is compared with other results to verify whether the 

removal of a large number of common metabolites will lead to the collapse of the network. 

3.3 Cascade model 

The original cascade model was proposed by Cohen and Newman in 1985 (Zhang, 2012a, Zhang, 2018). The 

model assumes that the adjacent matrix A of size S*S (S is the number of metabolites) constructed from the 

metabolic network is a strict upper triangular matrix (that is, if i≥j, then aij=0). In this case, the metabolic 

network is acyclic; and the species with sequence number 1 can only produce other metabolites, but cannot be 

obtained from other metabolites, and the metabolites with sequence number 2 can produce metabolites with 

sequence number 3 and above, but can also be obtained by metabolite 1 was obtained. Therefore, the 

metabolite with the serial number S can be produced from any other metabolite except itself (Zhang, 2012a; 

Zhang, 2016b, 2018; Zhang et al., 2014). Therefore, a strictly upper triangular matrix describes a strict 

metabolic hierarchy. Further, the model assumes that there is a positive real number c (in fact, c=2CS2/(S-1), 

where C is the connectivity), for S≥c, the elements above the main diagonal in the upper triangular matrix obey 

the 0-1 distribution with parameter p=c/S, so that the relevant properties of the metabolic network can be 

deduced.    

 

4 Results  

Since the metabolites and metabolic processes of each signaling pathway are mainly expressed in the form of 

imagery data, they have been sorted and analyzed into the format required by the analysis software, and then 

imported into the software for analysis. The results are as follows. 

4.1 Centrality analysis and core skeleton analysis 

4.1.1 AKT signaling pathway 

Use Pajek/Net/Partitions/DC/All,Net/Vector/Centrality/Betweenness, and Net/Vector/Centrality/Closeness/All 

to calculate the centrality values of AKT signaling pathway, the results are listed in Table 1. 

 

Table 1 DC, BC and CC of metabolites in AKT signaling pathway. 

ID Metabolite DC BC CC 

1 GABA(A)R 1 0.000000 0.341176 

2 CPCR 1 0.000000 0.195286 

3 Ras 3 0.026013 0.241667 

4 RTK 1 0.000000 0.195286 

5 PI3Ky 1 0.000000 0.210909 

6 PIP3 6 0.101028 0.266055 

7 PDK-1 2 0.108590 0.327684 

8 PI3K-GAB1-GAB2 2 0.038113 0.310160 
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9 GAB2 1 0.000000 0.300518 

10 Akt 7 0.192377 0.426471 

11 IRS1-PI3K 2 0.004537 0.327684 

12 PIP2 1 0.000000 0.210909 

13 PTEN 1 0.000000 0.210909 

14 CTMP 1 0.000000 0.300518 

15 PI3K 3 0.038113 0.215613 

16 ILK 1 0.000000 0.300518 

17 JAK1 1 0.000000 0.177914 

18 BCAP 2 0.013007 0.179012 

19 SYK 1 0.000000 0.152231 

20 Akt-p 31 0.217786 0.513274 

21 Caspase9-P 1 0.000000 0.341176 

22 PDE3B-P 1 0.000000 0.341176 

23 TSC2-TSC1 2 0.025408 0.358025 

24 mTOR 3 0.019964 0.272300 

25 p70S6K 1 0.000000 0.214815 

26 4EBP1 2 0.006957 0.216418 

27 eIF4E 1 0.000000 0.178462 

28 Raf1 1 0.000000 0.341176 

29 XIAP-Ser87-P 1 0.000000 0.341176 

30 BAD-P 2 0.006325 0.345238 

31 BAD-P-(14-3-3) 1 0.000000 0.257778 

32 Chk1 1 0.000000 0.341176 

33 P21CIP1-P 1 0.000000 0.341176 

34 P27KIP1-P-(14-3-3) 1 0.000000 0.341176 

35 FKHR-P-(14-3-3) 2 0.000000 0.345238 

36 FKHR-Death Genes 1 0.000000 0.257778 

37 CREB-P 2 0.006352 0.345238 

38 CREB-P-Survival Genes 1 0.000000 0.257778 

39 MDM2-P 2 0.006352 0.345238 

40 MDM2-P-p53-Ub 1 0.000000 0.257778 

41 GSK3 3 0.012704 0.349398 

42 Glycogen Synthase 1 0.000000 0.260090 

43 CyclinD 1 0.000000 0.260090 

44 JIP1 1 0.000000 0.341176 

45 ASK1-P 1 0.000000 0.341176 

46 eNOS-P 1 0.000000 0.341176 

47 AR-P 1 0.000000 0.341176 

48 Ataxin-(14-3-3) 1 0.000000 0.341176 

49 Htt-P 1 0.000000 0.341176 

50 YAP-(14-3-3) 1 0.000000 0.341176 
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51 P47Phox 1 0.000000 0.341176 

52 PRAS40-(14-3-3) 1 0.000000 0.341176 

53 WNK1-P 1 0.000000 0.341176 

54 IKKs-P 1 0.000000 0.341176 

55 PFK1-P-PFK2-P 1 0.000000 0.341176 

56 GLUT4 1 0.000000 0.341176 

57 DNA-PK 1 0.000000 0.341176 

58 PP2A 1 0.000000 0.341176 

59 CDC37-HSP90 1 0.000000 0.341176 

 

 

It can be found from Table 1 that some metabolites have a very large degree, including the three 

metabolites with degrees 6, 7, and 31. Most of the metabolites have degrees between 1 and 3, accounting for 

94.9% of the total metabolites, indicating that a few metabolites have a high degree, and most metabolites have 

a low degree. Among them, the metabolites with the degree of 1 are the most popular, indicating that the 

topology of the AKT signaling pathway is relatively concentrated, the chain structure is less, and the central 

metabolites are restricted by the surrounding metabolites. This is consistent with the results of Huang and 

Zhang (2012), i.e., the AKT network type is a scale-free complex network, and the degree distribution 

conforms to the power-law distribution (Zhang and Li, 2016), that is, a few metabolites in the network have 

high degrees, and most metabolites have low degrees (Huang and Zhang, 2012). 

Metabolites with higher degrees tend to be critical components of the metabolic process. We use degree 

centrality, betweenness centrality and closeness centrality to evaluate the relative importance of metabolites. 

The larger the centrality value, the more important the metabolite is. It can be seen from Table 1 that the top 

five metabolites with DC, BC and CC values are 20, 10, 6, 15, 3; 20, 10, 7, 6, 8; 20, 10, 41, 37, 39. The 

number of metabolites with DC, BC, and CC values all ranking in the top five is 20 and 10. From this, it can 

be speculated that Akt-p and Akt are important metabolites in the AKT network. According to the results of Li 

and Zhang (2013), FKHR-P-(14-3-3), IKKs-P, Akt, Akt-P, mTOR, TSC2-TSC1, PDK-1, PIP3, IRS1-PI3K, 

PI3K are important metabolites of the AKT metabolic network because these ten metabolites have the largest k 

value (k=2). Akt-p and Akt are important metabolites and the results of Li and Zhang (2013) are the same, and 

other results are different mainly due to the different degrees of accuracy caused by different measures. 

Selecting k cores to measure the importance of metabolites, the results are not detailed enough. For example, 

the k values of TSC2-TSC1, Akt-P, FKHR-P-(14-3-3), IKKs-P, and mTOR are all 2, but their importance in 

the network is different. Akt-p is the center in the network, with more adjacent metabolites, has a greater 

ability to bear and transmit information and a faster information transmission speed. Therefore, the importance 

of metabolites cannot be measured simply by the k value. The results obtained by experiment are more 

accurate than those obtained by the k value In terms of topological properties, Akt-p is the most critical 

metabolite of the AKT network, and Akt is the second most important metabolite. 

Akt-p and Akt are important metabolites in the AKT network and also verify some of the existing research 

results of the Akt signaling pathway. Huang et al. (2008) believed that Akt signaling pathway-related tumors, 

PI3K/Akt and its related genes can be used as targets for gene therapy. The reason why the importance of the 

results of PI3K metabolite centrality analysis is not reflected here may be that PI3K is located in the initial part 

of the Akt signaling network, activates Akt by generating the second messenger PIP3, and is at the edge of the 

network, so the betweenness centrality (BC=0.038113) and closeness centrality (CC=0.215613) are smaller, 

but the degree DC=3, k=2, and the importance is also relatively high. 
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The following will verify the results obtained by the centrality analysis by removing some metabolites and 

comparing with the complete network. The results above are verified by comparing the topological structures 

of removing important metabolites, random metabolites, a large number of common metabolites and the 

complete network. Referring to Kuang and Zhang (2011), the results obtained by three measures of metabolite 

analysis, link analysis and chain length analysis are selected for comparison. The important metabolites to be 

removed are 20 and 10 whose DC, BC, and CC values are in the top five. The two random metabolites 

obtained by the RANDBETWEEN function in MS Excel are: 28 and 35. In total of 17 (one-third of the total 

number of common metabolites) random common metabolites are removed including 15, 25, 32, 3, 29, 14, 39, 

47, 28, 27, 43, 13, 4, 18, 11, 58, 17. The comparison results are shown in Table 2. 

 

 

Table 2 Comparison of the topological structure of metabolic networks after removing important metabolites, random 
metabolites and a large number of common metabolites and that without removing metabolites. 

    

Removing two 

important 

metabolites S=57

Removing two 

random 

metabolites S=57

Removing 1/3 

common 

metabolites S=42 

Unremoved 

S=59 

Metabolite 

analysis 

Averaged 

degree 0.7719 1.9649 1.8095 2 

Isolated 

metabolites 24 1 3 0 

  

Link 

analysis 

Total number 

of links 22 56 38 59 

Maximum 

degree 6 29 26 31 

Link density 0.386 0.9825 0.9048 1 

Connectivity 0.0068 0.0172 0.0215 0.01 

  

Chain 

length 

Maximum 

chain length ID 19：4 ID 19：10 ID 5 and 12：7 ID 19：10 

analysis           

 

 

It can be found from Table 2 that, compared with the analysis results without removing important 

metabolites, the Akt metabolic network with two important metabolites, Akt-p and Akt removed: 

(1) There are 24 isolated metabolites, which is much larger than the value of removing two random metabolites 

and 17 common metabolites. That is, after removing the important metabolites, Akt-p and Akt, a large number 

of metabolite connections in the network are broken, a large number of metabolites fail, and the network 

characteristics of the metabolic network no longer exist, and the network can only eventually collapse. 

(2) The total number of links, the maximum degree, the connection density and the connectivity are all reduced, 

and the degree of reduction is greater than removing two random metabolites. 

(3) The maximum chain length changes, but the maximum chain length of the network without random 

metabolites remains unchanged. 

It can be seen that after removing the two important metabolites, Akt-p and Ak, the topology of the Akt 

metabolic network has changed greatly, which verifies the results obtained by the above centrality analysis. In 
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addition, after removing 17 common metabolites, although only 3 isolated metabolites appeared, the total 

number of links, the maximum degree, the link density and the connectivity all decreased, the maximum chain 

length also changed, and the network topology also changed greatly. It can be seen that in the presence of 

important metabolites and their interconnections, the removal of a large number of common metabolites will 

also lead to the collapse of the network. 

In conclusion, Akt-p and Akt constitute the core skeleton of the AKT metabolic network, which is crucial 

for the maintenance of the AKT metabolic network. 

4.1.2 JAK-STAT signaling pathway 

Centrality values of JAK-STAT signaling pathway are calculated and listed in Table 3. 

 

Table 3 DC, BC and CC of metabolites in JAK-STAT signaling pathway. 

ID Metabolite DC BC CC 

1 JAK1 3 0.000000 0.185841 

2 JAK2 5 0.000000 0.254545 

3 TYK2 2 0.000000 0.141414 

4 JAKs 10 0.132985 0.308824 

5 SHP1-STATIP 2 0.000000 0.247059 

6 Growth Hormones Receptor 2 0.000000 0.235955 

7 IFNyR1 2 0.000000 0.185022 

8 IFNyR2 2 0.000000 0.214286 

9 IFNAR1 2 0.000000 0.185022 

10 IFNAR2 2 0.000000 0.141414 

11 Cytokines Receptor 2 0.000000 0.238636 

12 STAT5-P 3 0.015099 0.278146 

13 STAT3-P 2 0.005226 0.276316 

14 STAT1-P 7 0.005807 0.224599 

15 STAT2-P 3 0.001161 0.163424 

16 STATs-P 3 0.008130 0.276316 

17 SH28 1 0.000000 0.237288 

18 STAT-P 2 0.000000 0.274510 

19 SHP2-SOS-GRB2 2 0.013937 0.176471 

20 Ras 2 0.023810 0.166667 

21 RTK 2 0.002904 0.205882 

22 (STAT5-P)2 2 0.023229 0.304348 

23 (STATs-P)2 9 0.147793 0.336000 

24 (STAT3-P)2 2 0.013937 0.302158 

25 (STAT1-P)2 1 0.000000 0.184211 

26 IRF9 1 0.000000 0.160920 

27 STAT1-P-STAT2-P-IRF9 3 0.000000 0.190909 

28 (SUMO)3-(STATs)2-PIAS-Ubsc9 2 0.000000 0.254545 

29 KPNA1-RAN 3 0.008130 0.262500 

30 (STATs-P)2-Cofactors-CTFS-P 3 0.126887 0.269231 
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31 STAM-P 2 0.017131 0.244186 

32 SOCS 3 0.150407 0.251497 

33 PI3K 2 0.016260 0.240000 

34 Akt 1 0.000000 0.194444 

35 c-Myc 2 0.010163 0.206897 

36 Gene Expression 5 0.157375 0.240000 

37 Raf 2 0.032520 0.185022 

38 MEK 2 0.040070 0.217617 

39 ERKs 2 0.046458 0.264151 

40 JAK-(Ub)3 3 0.016260 0.245614 

41 Proteasome 1 0.000000 0.198113 

42 GAS 1 0.000000 0.194444 

43 ISRE 1 0.000000 0.194444 

  

 

Table 3 demonstrates that some metabolites have a large degree, among which some metabolites have 

degrees 7, 9, and 10 respectively. Most of the metabolites have degrees between 1 and 5, accounting for 93% 

of all metabolites, indicating that a few metabolites have a high degree, and most metabolites have a low 

degree. Among them, the metabolites with degree 2 are the most, indicating that the topology of the 

JAK-STAT signaling pathway is sparse and there are many chain structures. This is consistent with the 

findings of Huang and Zhang (2012) that the JAK-STAT signal network is a scale-free network, and the 

degree distribution conforms to a power-law distribution, that is, a few metabolites in the network have high 

degrees, and most metabolites have low degrees (Huang and Zhang, 2012; Zhang and Li, 2016). 

Metabolites with higher degrees tend to be critical components of the metabolic process. From the 

centrality values in Table 3, it can be known that the top five metabolite numbers with DC, BC, and CC values 

are 4, 23, 14, 2, 36; 36, 32, 23, 4, 30; 23, 4, 22, 24, 12. The metabolites with DC, BC, and CC values all 

ranking in the top five are 4 and 23. It is speculated that JAKs and (STATs-P)2 are important metabolites in 

the JAK-STAT network, indicating that JAKs and (STATs-P)2 play an important role in the JAK-STAT 

network. According to the results of Li and Zhang (2013), in the JAK-STAT metabolic pathway, only IFNyR2, 

IFNAR1, SH28, Ras, PI3K, Akt, (STAT3-P)2, ISRE, and Proteasome have a k value equal to 1, and the k 

values of other metabolites are all equal to 2. This shows that various metabolites are closely correlated in this 

pathway (Li and Zhang, 2013). The JAK-STAT network has many looped structures. JAKs and (STATs-P)2 

are hub metabolites connecting sub-loops, so JAKs and (STATs-P)2 are very important in the network. This is 

consistent with previous research findings that the constitutive activation of the JAK-STAT signaling pathway, 

especially the abnormal activation of STAT3, is closely related to the occurrence, development, invasion and 

metastasis of liver cancer. Overexpression of SOCS protein inhibits the activation of JAKs and the activity of 

STATs, thereby inducing apoptosis. On the contrary, the deletion of SOCS protein can lead to the 

overexpression of STAT3, which leads to the occurrence of malignant tumors, such as liver cancer (Darnell , 

2005; Croker et al., 2008; Morales et al., 2010). 

The results above are verified by comparing the topological structures of removing important metabolites, 

random metabolites and the complete network. Referring to the Kuang and Zhang (2011), the results obtained 

from three measures of metabolite analysis, link analysis and chain length analysis are selected for comparison. 

The important metabolites to be removed are metabolites 4 and 23 in the top five with DC, BC, and CC values. 
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The two random metabolites obtained by the RANDBETWEEN function in MS Excel are metabolites 20 and 

11. The comparison results are listed in Table 4. 

 

 
Table 4 Comparison of topological structure of metabolic networks after removing important metabolites and random 
metabolites and that without removing metabolites. 

    

Removing two 

important 

metabolites S=41 

Removing two 

random 

metabolites S=41 

Unremoved 

S=43 

Metabolite Averaged degree 1.9024 2.5853 2.6512 

analysis 

Isolated 

metabolites 1 1 0 

 

Link 

analysis 

Total number of 

links 39 53 57 

 Maximum degree 7 10 10 

 Link density 0.9512 1.2927 1.3256 

 Connectivity 0.0232 0.0315 0.0308 

  

Chain 

length 

Maximum Chain 

length ID 5、28：6 ID 2、6、37：9 ID 21：12 

analysis 

 

 

It can be found from Table 4 that compared with the results without removing important metabolites, the 

JAK-STAT metabolic network with two important metabolites, JAKs and (STATs-P)2 removed: 

(1) The average degree is 1.9024, which is greatly changed compared with the average degree of the complete 

JAK-STAT metabolic network. Although the number of isolated metabolites that appear after removing 

important metabolites and random metabolites is 1, the metabolic network maintains relative integrity after 

removing random metabolites, and after removing important metabolites, the network is divided into four 

independent metabolite clusters, and the network characteristics of the metabolic network no longer exist, and 

the network can only eventually collapse. 

(2) The total number of links, the maximum degree, the connection density and the connectivity are all reduced, 

and the degree of reduction is greater than removing two random metabolites. 

(3) Maximum chain length: The maximum chain length has changed and cannot be compared effectively. 

It can be seen that after removing the two important metabolites, JAKs and (STATs-P)2, the topology of 

the JAK-STAT metabolic network has changed greatly, which verifies the results obtained by the above 

centrality analysis. 

4.1.3 P53 signaling pathway 

Centrality values of P53 signaling pathway (Fig. 1) are calculated and listed in Table 5. 
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Fig. 1 p53 signaling pathway (Pathway Central, 2012). 

 

 

Table 5 DC, BC and CC of metabolites in P53 signaling pathway. 

ID Metabolite DC BC CC 

1 Hypoxia 1 0.000000 0.294798 

2 UV 5 0.000000 0.250000 

3 Chemotherapy 1 0.000000 0.202381 

4 Ionizing Radiation 1 0.000000 0.202381 

5 JNK 2 0.002647 0.303571 

6 HIPK2 2 0.002647 0.303571 

7 CSNK1 2 0.002647 0.303571 

8 p38 2 0.002647 0.303571 

9 p53-P-P 22 0.197059 0.414634 

10 HIFα 2 0.000000 0.294798 
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11 proceasome 2 0.000000 0.258883 

12 PTEN 3 0.018039 0.320755 

13 p53 4 0.023529 0.337748 

14 Ub-Ub-p53-MDM2 6 0.011373 0.329032 

15 Ub 1 0.000000 0.248780 

16 c-Abl 1 0.000000 0.248780 

17 HDAC 1 0.000000 0.251232 

18 14-3-3θ 2 0.000000 0.301775 

19 PIAS1 2 0.000000 0.294798 

20 PML 2 0.000000 0.294798 

21 BRCA1 2 0.000000 0.294798 

22 CAK 1 0.000000 0.294798 

23 PCAF 1 0.000000 0.251232 

24 Ac-p53 6 0.034706 0.333333 

25 Sirt 1 0.000000 0.251232 

26 p300 1 0.000000 0.251232 

27 MDM2 2 0.004314 0.301775 

28 DNA damage 5 0.025882 0.252475 

29 ATR 3 0.017451 0.309091 

30 Chk1-P 2 0.000000 0.301775 

31 ATM 3 0.017451 0.309091 

32 Chk2-P 1 0.000000 0.294798 

33 DNA-PK 2 0.000000 0.301775 

34 (Ac-p53-P)2 6 0.196471 0.428571 

35 GSK3β 3 0.013333 0.305389 

36 Akt 2 0.006667 0.246377 

37 p21CIP 2 0.012157 0.301775 

38 c-Fos 1 0.000000 0.284916 

39 GADD45 1 0.000000 0.284916 

40 CyclinD1-CDK2 1 0.000000 0.166124 

41 CyclinE-CDK4 1 0.000000 0.166124 

42 Rb-E2F 1 0.000000 0.195402 

43 E2F 3 0.000784 0.198444 

44 Rb-P 3 0.000000 0.241706 

45 Fas 1 0.000000 0.284916 

46 DR5 1 0.000000 0.284916 

47 Caspase 1 0.000000 0.284916 

48 Bax 2 0.000000 0.286517 

49 BCL2 2 0.000000 0.286517 

50 TSP1 1 0.000000 0.284916 

51 BAI1 1 0.000000 0.284916 

52 Gene Expression 13 0.152157 0.395349 
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From Table 5 we can find that some metabolites have a large degree, among which two metabolites have 

degrees of 13 and 22, and most of the metabolites have degrees between 1 and 6, accounting for 96.2% of the 

total metabolites in p53 signaling pathway. It indicates that a few metabolites in the network have a high 

degree, and most metabolites have a low degree. This is consistent with the results of Huang and Zhang (2012), 

the network type of p53 is a scale-free complex network, and the degree distribution follows the power-law 

distribution (Huang and Zhang, 2012; Zhang and Li, 2016). 

It can be seen from Table 5 that the top five metabolites with DC, BC and CC values are 9, 52, 14, 24, 34; 

9, 34, 52, 24, 28; 34, 9, 52, 13, 24. The metabolites with DC, BC, and CC values all ranking in the top five are 

9, 52, 24, and 34. It is speculated that metabolites 9, 52, 24 and 34 are important metabolites in the P53 

signaling pathway, indicating that p53-P-P, Gene Expression, Ac-p53, and (Ac-p53-P)2 play important roles in 

the p53 metabolic network. According to the results of Li and Zhang (2013), The k value of UV, ATM, DNA 

damage, ART, JNK, Chk1-P, HIPK2, CSNK1, p38, PTEN, proceasome, MDM2, 14-3-3θ, DNA-PK, Akt, 

GSK3β, Bax, BCL2, Ub-Ub-p53-MDM2, Gene Expression, (Ac-p53-P)2, and p53-P-P are 2, and these 

metabolites are more important in the network, and the k=1 for remaining metabolites. Both Gene Expression, 

(Ac-p53-P)2, and p53-P-P are the crucial metabolites of the network using k value analysis and centrality 

analysis, but Li and Zhang (2013) believes that the k value of Ac-p53 is 1, so it doesn't seem to be important. 

The centrality analysis shows that Ac-p53 has larger DC, BC and CC values (all top five), and is closely 

related to (Ac-p53-P)2 and p53-P-P, so it can be considered that this metabolite is also very critical. This is 

also consistent with the results of Blattner (2002) that the level of p53 increases after being stimulated by 

external stress, and as a transcription factor, it is activated by phosphorylation (by generating (Ac-p53-P)2, 

p53-P-P, Ac-p53). The expression of downstream genes can prevent the malignant transformation of cells and 

the occurrence of tumors by initiating cell cycle arrest and apoptosis. After mutation of p53, the tumor 

suppressor function of wild-type p53 is lost, and the function similar to that of an oncogene is obtained. 

Therefore, the most studied gene therapy using p53 is wild-type p53 gene replacement therapy (Blattner et al., 

2002)). 

The results above are verified by comparing the topological structures of removing important metabolites, 

random metabolites, a large number of common metabolites and the complete network. The important 

metabolites to be removed are 9, 52, 24, and 34 whose DC, BC, and CC values are in the top five. The 4 

random metabolites obtained by the RANDBETWEEN function in MS Excel are metabolites 45, 11, 29, and 

33. The comparison results are listed in Table 6. 

 
Table 6 Comparison of topological structure of metabolic networks after removing important metabolites and random 
metabolites and that without removing metabolites. 

    

Removing four 

important metabolites 

S=48 

 

Removing four random 

metabolites  

S=48 

 

Unremoved 

 

S=52 

 

Metabolite Averaged degree 1.0833 2.5833 2.6923 

analysis 

Isolated 

metabolites 18 0 0 

     

Link 

analysis 

Total number of 

links 26 62 70 

Maximum degree 6 20 22 

Link density 0.5417 1.2917 1.3462 
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 Connectivity 0.0113 0.0269 0.0259 

 

Chain 

length 

Maximum chain 

length ID 2、3、4：3 ID 3、4：7 ID 3、4：7 

analysis 

 

 

It can be seen from Table 6 that compared with the results without removing the important metabolites, the 

p53 metabolic network with the four important metabolites of p53-P-P, Gene Expression, Ac-p53 and 

(Ac-p53-P)2 removed: 

(1) There are 18 isolated metabolites, and the average degree is 1.0833, which is more variable than the 

complete metabolic network. However, there is no isolation after removing random metabolites, and the 

average degree is 2.5833, which is not much different from the complete metabolic network. That is, after 

removing the important metabolites 9, 52, 24, and 34, a large number of metabolite connections in the network 

are broken, and a large number of metabolites fail, so the network characteristics of the metabolic network no 

longer exist, and the network can only eventually collapse. 

(2) The total number of links, the maximum degree, the connection density and connectivity are all reduced, 

and the degree of reduction is greater than that of removing random metabolites. 

(3) The maximum chain length varies greatly. 

It can be seen that after the removal of the four important metabolites, p53-P-P, Gene Expression, Ac-p53, 

and (Ac-p53-P)2, the topology of the p53 metabolic network has undergone great changes, which verifies that 

the above centrality results obtained. 

4.1.4 Ras signaling pathway 

The centrality values of Ras signaling pathway are calculated and listed in Table 7. 

 

Table 7 DC, BC and CC of metabolites in Ras signaling pathway. 

ID Metabolite DC BC CC 

1 Integrins 1 0.000000 0.196532 

2 Rap1A-GTP 2 0.008913 0.242857 

3 PLC-∑ 2 0.016043 0.311927 

4 Ras-GDP 5 0.055258 0.311927 

5 Ras-GTP 12 0.000000 0.425000 

6 GRB2 1 0.000000 0.239437 

7 GAP 2 0.000000 0.306306 

8 GEF 2 0.000000 0.306306 

9 PMA 1 0.000000 0.239437 

10 CD-GECII 3 0.053476 0.311927 

11 TCR 1 0.000000 0.239437 

12 Lck 1 0.000000 0.300885 

13 RalGDS 2 0.040107 0.330097 

14 Ral 3 0.035651 0.265625 

15 PLD 1 0.000000 0.211180 

16 RalBP1 2 0.019608 0.216561 
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17 CDC42 2 0.010695 0.180851 

18 Actin Cytoskeleton 1 0.000000 0.153846 

19 Raf-P 2 0.032086 0.323810 

20 MEKs-P 2 0.026738 0.257576 

21 ERKs-P 2 0.019608 0.211180 

22 ERKs 2 0.010695 0.177083 

23 Elk1 1 0.000000 0.151111 

24 PI3K 2 0.024064 0.317757 

25 Rac 4 0.037433 0.267717 

26 PAKs 2 0.021390 0.272000 

27 MEKK1 3 0.062389 0.343434 

28 JNKK 2 0.053476 0.274194 

29 JNK 3 0.042781 0.225166 

30 c-Jun-c-Fun 1 0.000000 0.184783 

31 ATF2 2 0.015152 0.186813 

32 Gene Expression 1 0.000000 0.158140 

33 p120-GAP 2 0.008021 0.311927 

34 p190-B 2 0.008021 0.251852 

35 Rho 1 0.000000 0.212500 

 

 

Table 7 shows that three metabolite have degrees 4, 5, and 12 respectively. Most of the metabolites have 

degrees between 1 and 3, accounting for 91.4% of the total metabolites, among them the metabolites with 

degrees 1 and 2 are the most, indicating that the topology of the Ras signal metabolism network is sparse and 

there are many chain structures. The network type of Ras is a scale-free complex network, and the degree 

distribution conforms to the power-law distribution (Huang and Zhang, 2012). 

It can be seen from Table 7 that the top five metabolites with DC, BC and CC values are 5, 4, 25, 27, 10; 

27, 4, 10, 28, 29; 5, 27, 13, 19, 24. Among them, the DC, BC, and CC values are all ranked in the top five 

metabolites are 5, 4, and 27. From this, it can be speculated that 5, 4, and 27 are important metabolites in the 

Ras network, indicating that Ras-GTP, Ras-GDP, and MEKK1 play important roles in the Ras network. 

According to the results of Li and Zhang (2013), in the Ras metabolic pathway, only four metabolites, Actin 

Cytoskeleton, PMA, TCR, and Rho, have k values equal to 1, and the k values of other metabolites are equal to 

2. The metabolism of 35 metabolites in the Ras metabolic pathway is closely related and the process is 

complex (Li and Zhang, 2013). The k value cannot further discriminate the relative importance of these 31 

metabolites with k value of 2. By comparing the three centrality values, the three most important metabolites 

can be found. Regardless of the k value or the centrality analysis, it can be concluded that Ras-GTP, Ras-GDP 

and MEKK1 are the crucial metabolites in the Ras network. Because Ras-GTP is the pivot metabolite of many 

loop-forming structures and chain-like structures, Ras-GDP and MEKK1 are located at the overlapping points 

of loop-like and chain-like structures. Ras proteins include an active GTP-binding conformation and an 

inactive GDP-binding conformation, which can be interconverted under certain conditions to form the Ras 

cycle. About 30% of human tumors have point mutations in the Ras gene. The point-mutated Ras protein loses 

the GTPase activity, preventing the hydrolysis of the active form of the Ras protein by the GTPase-activating 

protein, resulting in the existence of the Ras protein in the active bound form (Bos, 1989). 
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The results above are verified by comparing the topological structures of removing important metabolites, 

random metabolites, a large number of common metabolites and the complete network. The important 

metabolites to be removed are Ras-GTP, Ras-GDP, and MEKK1 whose DC, BC, and CC values are ranked in 

the top five. The three random metabolites obtained by the RANDBETWEEN function in MS Excel are 

metabolites 12, 35, and 25. The comparison results are listed in Table 8. 

 

 
Table 8 Comparison of topological structures of metabolic networks after removing important metabolites and random 
metabolites and that without removing metabolites. 

    

Removing three 

important 

metabolites S=32 

Removing three 

random metabolites 

S=32 

Unremoved 

S=35 

 

Metabolite Averaged degree 1.375 2.125 2.2286 

Analysis 

Isolated 

metabolites 4 0 0 

     

Link 

analysis 

Total number of 

links 22 34 39 

Maximum degree 3 11 12 

Link Density 0.6875 1.0625 1.1142 

Connectivity 0.0215 0.0332 0.0318 

     

Chain 

length 

Maximum chain 

length ID 13、19：4 ID 6、8、9、11：7 ID 33：8 

Analysis 

 

 

It can be found from Table 8 that compared with the results without removing important metabolites, the 

Ras metabolic network with three important metabolites, Ras-GTP, Ras-GDP and MEKK1 removed: 

(1) The average degree is 1.375, which varies greatly compared with the complete metabolic network. 

Although only 4 isolated metabolites appeared, the metabolic network was broken into six independent 

modules (i.e., clusters), the overall characteristics of the original metabolic network no longer existed, and the 

network collapsed. 

(2) The total number of links, the maximum degree, the connection density and the connectivity are all reduced, 

and the degree of reduction is greater than that of removing random metabolites. 

(3) The maximum chain length varies greatly. 

It can be seen that after removing the three important metabolites, Ras-GTP, Ras-GDP, and MEKK1, the 

topology of the Ras metabolic network has changed greatly, which verifies the results obtained by the above 

centrality analysis. 

4.1.5 TNF signaling pathway 

The centrality values of TNF signaling pathway are calculated and listed in Table 9. 
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Table 9 DC, BC and CC of metabolites in TNF signaling pathway. 

ID Metabolite DC BC CC 

1 FADD 1 0.000000 0.205479 

2 RAIDD 1 0.000000 0.211268 

3 RIP 2 0.000000 0.283019 

4 TRADD 4 0.011494 0.315789 

5 TRAF2 2 0.000000 0.277778 

6 SODD 2 0.000000 0.250000 

7 Caspase8 4 0.006897 0.256410 

8 Caspase2 5 0.006897 0.265487 

9 Caspase1 4 0.003448 0.260870 

10 Caspase3 4 0.000000 0.283019 

11 Caspase6 3 0.000000 0.227273 

12 Caspase7 3 0.000000 0.227273 

13 BID 2 0.004598 0.208333 

14 Caspase9 4 0.006897 0.236220 

15 tBID 1 0.000000 0.173410 

16 Cytoc 1 0.000000 0.163934 

17 CytoC- Caspase 9- APAF1 2 0.004598 0.194805 

18 MEKIKs-P-NIK-P 6 0.036782 0.337079 

19 ERKs-P 2 0.008621 0.291262 

20 p38-P 2 0.008621 0.291262 

21 IKKs-P 2 0.011494 0.277778 

22 (NF-kB)-IkBs 2 0.008046 0.247934 

23 EIk1 2 0.004023 0.260870 

24 ATFs 2 0.004023 0.260870 

25 NF-kB 2 0.002299 0.227273 

26 Ceramides 1 0.000000 0.120000 

27 TAK1 2 0.004598 0.135747 

28 JNKK1-P 2 0.006897 0.154639 

29 JNK1-P 2 0.006897 0.177515 

30 (c-Jun)-(c-Fos) 2 0.004598 0.205479 

31 Gene Expression 4 0.000000 0.240000 

 
Table 9 indicates that two metabolites have degrees 5 and 6, and most metabolites have degrees between 1 

and 4, which is 93.5% of the total metabolites, among them the metabolites with degree 2 are the most, 

indicating that the topology of the TNF signaling metabolism network is sparse and there are many chain 

structures. Network type of TNF is a scale-free random network, and the degree distribution does not conform 

to the binomial distribution and Poisson distribution (Huang and Zhang, 2012). 

It can be seen from Table 9 that the top five metabolites with DC, BC and CC values are 18, 8, 4, 7, 10; 18, 

4, 21, 19, 20; 18, 4, 19, 20, 10. Among them, the metabolites whose DC, BC, and CC values are ranked in the 

top five are metabolites 18 and 4. It can be speculated that MEKIKs-P-NIK-P and TRADD are important 
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metabolites in TNF network. According to the results of Li and Zhang (2013), there are Caspase3, Caspase2, 

Caspase6, Caspase7, Caspase1, and Caspase9 in the TNF metabolic pathway with the k value equal to 3, which 

are crucial parts of the network, and other metabolites have the k values equal to 2 or 1 (Li and Zhang, 2013). 

However, the centrality analysis showed that MEKIKs-P-NIK-P and TRADD are the important metabolites of 

TNF network. The large k values of Caspase3, Caspase2, Caspase6, Caspase7, Caspase1, and Caspase are 

mainly because these six metabolites are connected to each other into a small module, but this small module is 

not located in the center of the network, while MEKIKs-P-NIK-P is more important because it is the pivot 

metabolite for different modules. Topological property analysis showed that MEKIKs-P-NIK-P may play an 

important role in the mutual mediation and restriction of the three signaling pathways of JNK, NF-kB and 

Caspase. 

The results above are verified by comparing the topological structures of removing important metabolites, 

random metabolites, a large number of common metabolites and the complete network. The important 

metabolites to be removed are 18 and 4 in the top five with DC, BC, and CC values. The two random 

metabolites obtained by the RANDBETWEEN function in MS Excel are metabolites 3 and 14. The 

comparison results are shown in Table 10. 

Table 10 shows that compared with the results without removing important metabolites, the TNF metabolic 

network with two important metabolites MEKIKs-P-NIK-P and TRADD removed: 

(1) The average degree is reduced. Although there are no isolated metabolites, the metabolic network is 

divided into three independent small clusters after removing important metabolites. The integrity of the 

metabolic network is destroyed, and the network characteristics no longer exist. 

(2) The total number of links, the maximum degree, the connection density and the connectivity are all reduced, 

and the degree of reduction is greater than that of removing random metabolites. 

(3) The maximum chain length of ID 26 is the same as that of the original network, but the chain lengths of 

other metabolites vary greatly. 

It can be seen that after removing the two important metabolites, MEKIKs-P-NIK-P and TRADD, the 

topology of the TNF metabolic network changed greatly, which verified the results obtained by the above 

centrality analysis. 

 

Table 10 Comparison of topological structure of metabolic networks after removing important metabolites and random 
metabolites and that without removing metabolites. 

    

Removing two 

important 

metabolites S=29 

Removing two 

random 

metabolites S=29

Unremoved 

S=31 

Metabolite Averaged degree 2.0689 2.2759 2.5161 

analysis Isolated metabolites 0 0 0 

     

Link 

analysis Total number of links 30 33 39 

Maximum degree 5 5 6 

Link density 1.0345 1.2379 1.2581 

 Connectivity 0.0357 0.0393 0.0406 

 

Chain 

length Maximum chain length ID 26：5 ID 6、26：5 ID 6、26：5 

analysis 
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4.1.6 VEGF signaling-pathway 

The centrality values of VEGF signaling pathway are calculated and listed in Table 11. 

 

Table 11 DC, BC and CC of metabolites in VEGF signaling pathway. 

ID Metabolite DC BC CC 

1 VEGFR2 3 0.000000 0.237762 

2 PIP3 3 0.016711 0.306306 

3 PIP2 3 0.000000 0.280992 

4 PI3K-P 3 0.008021 0.314815 

5 Src 2 0.000000 0.269841 

6 PLCy-P 2 0.000000 0.215190 

7 IP3 3 0.006462 0.244604 

8 DAG 3 0.010695 0.248175 

9 GRB2-SHC-SOS 2 0.007130 0.219355 

10 FAK-Paxillin 3 0.004456 0.259542 

11 MKK3/6 2 0.003565 0.201183 

12 Akt/PKB 4 0.019385 0.267717 

13 P 2 0.000000 0.206061 

14 BAD-P 3 0.003936 0.253731 

15 Caspase9-P 3 0.003936 0.253731 

16 eNOS-HSP90 2 0.005273 0.250000 

17 p38 2 0.006239 0.203593 

18 MAPKAPK2/3 2 0.007130 0.223684 

19 HSP27 2 0.006239 0.259542 

20 Focal Adhesion Turnover 2 0.004456 0.255639 

21 Cell Migration 2 0.002674 0.283333 

22 Ras 2 0.013369 0.220779 

23 Raf1 3 0.037433 0.242857 

24 MEK1/2 2 0.036542 0.246377 

25 ERK1/2 3 0.033868 0.269841 

26 PKC 2 0.016043 0.232877 

27 Ca++ 2 0.007353 0.232877 

28 Prostagiandin Production 3 0.015374 0.263566 

29 cPLA 2 0.014260 0.232877 

30 Cell Suvival 3 0.004308 0.280992 

31 NO production 2 0.001708 0.272000 

32 Actin Reorganization 3 0.005348 0.317757 

33 Gene Expression &Cell 

Proliferation 

2 0.006239 0.288136 

34 Vascular Cell Permeability 2 0.004679 0.283333 

35 ANGIOGENESIS 6 0.000000 0.343434 
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Table 11 demonstrates that two metabolites have degrees 4 and 6, and most metabolites have degrees 

between 2 and 3, which is 94.3% of the total metabolites, among them the metabolites with degree 2 are the 

most, indicating that the topology of the VEGF signaling metabolism network is sparse and the chain structure 

is more. Network type of VEGF is a scale-free random network, and the degree distribution does not conform 

to the binomial distribution and Poisson distribution, but conforms to the power-law distribution (Huang and 

Zhang, 2012). 

Table 11 shows that the top five metabolites with DC, BC and CC values are 35, 12, 2, 23, 32; 23, 24, 25, 

12, 2; 35, 32, 4, 2, 33. Among them, the metabolite whose DC, BC, and CC values are all ranked in the top 

five is 2; the highest value of DC and CC is metabolite 35. It can be speculated that metabolites 2 and 35 are 

important metabolites in the VEGF network, indicating that PIP3 and ANGIOGENESIS (angiogenesis) may 

play an important role in the VEGF network. According to the results of Li and Zhang (2013), the k value of 

all metabolites in the VEGF metabolic pathway is equal to 4. These metabolites constitute a core network (Li 

and Zhang, 2013). The VEGF metabolic network is a loop-shaped closed structure, and the k values are all the 

same. Therefore, in terms of DC, BC, and CC values, PIP3 is the most critical metabolite in the VEGF 

network, and ANGIOGENESIS is the second key metabolite. 

The results above are also verified by comparing the topological structures of removing important 

metabolites, random metabolites, a large number of common metabolites and the complete network. The 

important metabolites to be removed are the top 2 with DC, BC, and CC values, and the 35 with the largest DC 

and CC. The 2 random metabolites obtained by the RANDBETWEEN function in MS Excel are metabolites 

11, 1. The comparison results are shown in Table 12. 

It can be seen from Table 12 that compared with the results without removing important metabolites, the 

VEGF metabolic network with two important metabolites, ANGIOGENESIS and PIP3 removed: 

(1) The average degree is reduced. Although there are no isolated metabolites, the metabolic network is 

divided into two independent small clusters after removing important metabolites. The integrity of the 

metabolic network is destroyed, and the network characteristics no longer exist. 

(2) The total number of links, the maximum degree, the connection density and the connectivity are all reduced, 

and the degree of reduction is greater than that of removing random metabolites. 

(3) The maximum chain length of metabolite 1 is the same as the original network, but the chain lengths of 

other metabolites vary greatly. 

After removing the two important metabolites, PIP3 and ANGIOGENESIS, the topology of the VEGF 

metabolic network changed greatly, which verified the results of the above centrality analysis. 

 

Table 12 Comparison of topological structure of metabolic networks after removing important metabolites and random 
metabolites and that without removing metabolites. 

    

Removing two 

important 

metabolites S=33 

Removing two 

random metabolites 

S=33 

Unremoved 

S=35 

Metabolite Averaged degree 2.1818 2.4848 2.5714 

analysis 

Isolated 

metabolites 0 0 0 

     

Link 

analysis 

Total number of 

links 36 41 45 

Maximum degree 3 6 6 

Link density 1.0909 1.2424 1.2857 
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 Connectivity 0.0331 0.0376 0.0367 

 

Chain 

length 

Maximum chain 

length ID 1：8 ID 8、9：7 ID 1：8 

analysis 

 

4.2 Cascade model analysis 

From Table 13, we can find that among the property values predicted by the cascade model for Akt, p53, Ras, 

TNF and VEGF signaling pathways, there is one that is significantly different from the true value (error greater 

than 1), and the other six predicted values are not different from the true value. The seven values of 

JAK-STAT signaling pathway are not much different from the true values. Therefore, the cascade model can 

better predict the properties of the JAK-STAT signaling pathway, but cannot well predict the properties of Akt, 

p53, Ras, TNF, VEGF and other signaling pathways. Because the relative error is very large, the reason may 

be that the assumptions such as "elements in the matrix obey the 0-1 distribution of p=c/S" in the cascade 

model do not hold in these five tumor signaling pathways. 

 

Table 13 Prediction of network properties of tumor signaling pathways using cascade model*. 

Tumor 

signaling 

pathways 

Proportion 

type 
U M D UM UD MM MD 

True 0.2203 0.2712 0.5085 0.2034 0.0170 0.3220 0.4576 

Akt Predicted 0.3799 0.2402 0.3799 0.2716 0.2989 0.1579 0.2716 

Rel. error 0.1155 0.0035 0.0325 0.0229 4.6898 0.0836 0.0756 

True 0.1860 0.7209 0.0903 0.2105 0.0526 0.6667 0.0702 

JAK-STAT Predicted 0.3251 0.3498 0.3251 0.2810 0.2123 0.2257 0.2810 

Rel. error 0.1039 0.1910 0.5789 0.0236 0.4845 0.2916 0.6333 

True 0.2885 0.5000 0.2115 0.2571 0.0143 0.6715 0.0571 

p53 Predicted 0.3223 0.3554 0.3223 0.2806 0.2078 0.2310 0.2806 

Rel. error 0.0040 0.0418 0.0580 0.0021 2.6200 0.2889 0.8740 

True 0.1143 0.6857 0.2000 0.1026 0 0.7180 0.1795 

Ras Predicted 0.3594 0.2812 0.3594 0.2775 0.2652 0.1798 0.2775 

Rel. error 0.5257 0.2386 0.1271 0.2985 * 0.4034 0.0535 

True 0.2258 0.6129 0.1613 0.2820 0 0.4359 0.2821 

TNF Predicted 0.3350 0.3300 0.3350 0.2813 0.2281 0.2093 0.2813 

Rel. error 0.0528 0.1305 0.1870 0 * 0.1178 0 

True 0.1429 0.8286 0.0285 0.2 0 0.6667 0.1333 

VEGF Predicted 0.3309 0.3382 0.3309 0.2813 0.2214 0.2160 0.2813 

Rel. error 0.2474 0.2901 3.1983 0.0330 * 0.3046 0.1641 

*: U, M, D represent the ratio of upstream, midstream and downstream metabolites to the total metabolites in the signaling 
pathways, respectively; UM, UD, MM, MD represent the ratio of upstream-midstream, upstream-downstream, 
midstream-midstream, and midstream-downstream links, respectively to the total number of links in the signaling pathways, 
repectively. The calculation of the relative error is: (true - predicted)2/true, and the value * is infinity. 
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5 Conclusion 

Akt, p53, Ras, TNF, JAK-STAT and VEGF are scale-free networks, and their degree distribution is the 

power-law distribution (Zhang and Li, 2016). It indicates that a few metabolites have a high degree, and most 

metabolites have a low degree. Higher metabolites with high degrees tend to be some critical metabolites in the 

metabolic process.  

Centrality and core skeleton analysis show that the crucial metabolites of AKT signaling pathway are 

Akt-p and Akt; the crucial metabolites of JAK-STAT signaling pathway are JAKs and 23(STATs-P)2; the 

crucial metabolites of p53 signaling pathway are p53-P-P, Gene Expression, Ac-p53 and (Ac-p53-P)2; the 

crucial metabolites of Ras signaling pathway are Ras-GTP, Ras-GDP and MEKK1; the crucial metabolites of 

TNF signaling-pathway are MEKIKs-P-NIK- P and TRADD, and for VEGF signaling pathway, the crucial 

metabolites are PIP3 and ANGIOGENESIS. When these important metabolites are removed from the 

pathways, a large number of metabolite connections in the network are broken, that is, a large number of 

metabolites fail, the network characteristics of the tumor metabolism network no longer exist, and the network 

collapses. However, when a certain number of common metabolites in the network are randomly removed, 

such consequences will not occur. The tumor metabolism network still has a high level of integrity in structure. 

This is consistent with the existing research, that is, the scale-free network has an amazing ability to withstand 

random external attacks, and is prone to collapse when important metabolites are attacked. The study of the 

topological structure of these six tumor metabolic networks is helpful to find the crucial factors in the network 

as molecular targets for drug screening. 

In terms of models, the cascade model is very inaccurate in simulating tumor signaling pathways such as 

Akt, p53, Ras, TNF, and VEGF, etc., because the relative error of the simulation is large, so we should build  

models with higher simulation accuracy. In this study, we have achieved a preliminary understanding of the 

network structure and related characteristics of six tumor signal pathways, which is helpful to discover and 

summarize the further correlations and rules. 
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