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Abstract 

In current publication there is the consideration of mathematical model of parasite-host system dynamics for 

the populations with non-overlapping generations. Within the framework of considering model it is assumed 

that appearance of individuals of new generation correlates with the death of individuals of the previous one. 

It is also assumed that between time moments of appearance of individuals of new generations there are the 

monotonous and independent decreasing of population sizes of interacting species in a result of influence of 

self-regulative mechanisms and natural death. All survived individuals of the host produce the eggs 

synchronically, and part of these eggs is attacked by parasites. In model it is assumed that the time for the 

appearance of hosts and parasites from the eggs is much less than the length of time interval between closed 

generations. It allows describing of the process of appearance of new generations as “jumps” in changing of 

population’s sizes. For considering model the dynamic regimes of interacting populations are analyzed for 

various values of model parameters and various assumptions about mechanism of interaction of species. In 

particular, there is the determination of conditions for parameters when the regimes of population outbreaks 

are observed in model. 
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1 Introduction  

Big number of publications are devoted to analyses of parasite – host system dynamics (see, for example, 

Kolmogoroff, 1936; Bailey, 1970; Bazykin, 1985; Odum, 1975; Maynard Smith, 1974; Kostitzin, 1937; Lotka, 

1920, 1925; Volterra, 1931; Nedorezov, 1986, and others). In most cases when description of interaction 

process of both species is presented in rather universal form (for example, as it is realized in Lotka – Volterra 

model of predator – prey system dynamics; Lotka, 1920, 1925; Volterra, 1931), there are no possibilities to 

separate predator – prey system and parasite – host system. Moreover, in various situations it is impossible to 

separate predator – prey system and resource – consumer system: In both cases we observe the process of 

interaction of species which belong to various trophic levels. And one of interacting species has negative 

results of this interaction, and another one has positive results.  

At the same time, it is easy to point out some population effects which underline qualitative differences for 

these ecological systems. For example, in natural conditions we can observe increasing or decreasing of food 

flow into the system in the process of interaction of insects with food plants (Isaev et al., 1984, 2001, 2009). 
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This effect is realized within the framework of resource – consumer system (with positive feedback it is 

observed for Xylotrehus altaicus Gebl. and Monogamus urussovi Fisch.; Isaev et al., 2009), but its realization 

within the framework of predator – prey system looks rather strange and doubtful.  

If interaction of species in predator – prey system has a continuous nature, at the same time the process of 

interaction of species in parasite – host system may have a discrete nature. For example, we can observe 

discrete process in interaction of parasites and hosts in the situations, when parasites attack host’s eggs and 

host’s pupae, and appearance of new generations of hosts has a synchronic nature. In such situations the 

process of interaction of both species is determined by the sojourn time of hosts in the respective individual’s 

phase (egg or pupa). For many species the length of time interval of staying in one or other phase is much less 

than life time of individuals. This allows modeling of process of interaction between species as jumps of 

trajectories of population sizes changing in time.  

In current publication we analyze the situation when independent development of interacting populations is 

described by the Verhulst’ equation (Verhulst, 1838), and the probability of host to be attacked by parasite 

corresponds to Roger’s expression (Sharov, 1986). 

 

2 Model 

Let )(tx  be the population size of hosts at time t , and )(ty  be the population size of parasites at the same 

time. Like in other continuous – discrete models of population dynamics (Kostitzin, 1937; Poulsen, 1979; 

Aagard-Hansen, Yeo, 1984; Nedorezov, 1986; Nedorezov, Nedorezova, 1995; Nedorezov, Utyupin, 2011; and 

others) we shall assume that there exists the set of fixed time moments }{ kt , 01  consthtt kk , 

...2,1,0k , of appearance of individuals of new generations of both populations. We shall also assume that 

between these time moments population sizes decrease monotonously. Decreasing of population size is 

determined by the process of natural death of individuals, and by the process of influence of self-regulative 

mechanisms (Verhulst, 1838): 

dx

dt
x x   1 1

2 ,  

2
22 yy

dt

dy   .                                                           (1) 

In (1) coefficients j , 2,1j , are the intensities of natural death rates in populations, and j , 2,1j , are 

the coefficients of self-regulation, 0, jj  .  

Let us note, that in (1) it is assumed that there is no interaction between species on the time intervals 

),[ 1kk tt . Interaction of considering populations is concentrated in time moments kt . It is also mean that 

within the framework of model it is assumed that the process of eggs production is realized synchronically by 

all hosts, during short time period these eggs can be attacked by parasites, and appearance of individuals of 

new generations is realized synchronically too. And the length of time interval when we can observe all these 

marked processes, is much less than life time of individuals h . This assumption allows us to describe the 

process of changing of population sizes as “jump” of model trajectory at fixed time moments kt .  

Let )0( 1 ktx  and )0( 1 kty  be the sizes of populations before “jumps” of trajectories (numbers of 

survived individuals to moment 1kt ). Thus solution of system (1) can be presented in the following form: 
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In (2) )( kk txx   and )( kk tyy   are the initial values of population sizes at moment kt , and positive 

parameters have the forms: 

 ,h=a ii exp    ,1exp -h=b i
i

i
i 



 i  1 2, . 

Let 1kx  and 1ky  be the population sizes after the birth process, Q  be the function which is equal to 

quota of hosts which were not attacked by parasites (respectively, Q1  is a quota of attacked hosts), and R  

be a coefficient of productivity of hosts. Below we shall assume that 0 constR . But in general case this 

function may depend on average host population size (Nedorezov, Nedorezova, 1995; Nedorezov, Utyupin, 

2011; Tonnang et al., 2009). Thus we have the following relation for changing of host population size at fixed 

time moments: 

QtRxx kk )0( 11   .                                                        (3) 

In (3) product )0( 1 ktRx  is equal to number of eggs which were produced by survived hosts. Denote as c , 

10  c , constc  , the quota of new parasites which appear from all parasitized host’s eggs. Thus we 

have the following equation for parasite population size changing at fixed time moments: 

)1)(0( 11 QtRxy kk   .                                                   (4) 

Taking into account expressions (2) equations (3) and (4) can be presented as follows: 

),(
11

1 kk
k

k
k yxFQ

xba

Rx
x 


 , ),()1(

11
1 kk

k

k
k yxGQ

xba

cRx
y 


 .                   (5) 

Function Q  must depend on two arguments. First of all, it depends on number of produced eggs, i.e. it 

depends on product )0( 1 ktRx . The second, function Q  depends on the number of parasites survived to 

moment 1kt : )0( 1 kty . It is obvious if number of survived parasites is equal to zero function Q  is equal to 

one. For every fixed value of number of parasites increase of number of hosts leads to increase of value of 

function Q . For every fixed value of number of hosts increase of number of parasites leads to decrease of 

value of function Q . Thus, we have the following conditions for function Q : 

1),(0  yxQ , 1)0,( xQ , 1),(   x
yxQ , 0),(   y

yxQ , 

0



x

Q
, 0



y

Q
.                                                      (6) 

In particular case function Q  can be presented in the form: 












hxT

yT
yxQ




1
exp),( . 
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It is obvious that all conditions (6) are satisfied. This function is used in Roger’s model of parasite – host 

system dynamics (Sharov, 1986). Parameter   is normally interpreted as characteristics of effectiveness of 

search process of victims by parasites. Parameter T  is equal to the length of life time of parasite. Parameter 

hT  is equal to the length of time interval of interaction of parasite with one host. Below we use this function 

for numerical calculations. 

 

3 Some Properties of Model (5) 

(1) If coefficient of self-regulation 1  in population of hosts is greater than zero, 01  , then sizes of both 

populations are limited for all finite initial values. There exists a stable invariant compact   which contains 

the origin, and trajectories of system (5) cannot intersect boundaries of this compact if initial values belong to 

int ,  int),( 00 yx .  

From the first equation of the system (5) we have the following relation: 

111
1 b

R

xba

Rx
x

k

k
k 


 . 

The second equation gives us the following inequality: 

Rbba
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k
k
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2
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


 . 

Thus, compact   has the following form:  






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
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111
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Note, that limits of compact   don’t depend on the value of parameter 2b . It means that population sizes will 

be bounded even in a case when parasites have no intra-population self-regulative mechanisms. Additionally, it 

is possible to point out stable invariant compact  :  . 

(2) For all values of model parameters the origin is stationary state of the system (5). If initial host population 

size is equal to zero, 00 x , then trajectory of system comes into origin after one time step. Thus, axis y  is 

incoming into origin integral trajectory. 

If initial value of parasites is equal to zero, 00 y , then host dynamics describes by the well-known 

Kostitzin’ model (Kostitzin, 1937): 

k

k
k xba

Rx
x

11
1 
 . 

If in Kostitzin’ model the following inequality 1aR    is truthful, hosts eliminate for all initial value of 

population size. Respectively, if this condition is realized for parameters of model (5), the origin is global 

stable state of the system: Both populations extinct for all possible values of population sizes. 

If the inverse inequality is truthful, 1aR  , then stationary state )0,/)(( 11 baR   on the axis x  is 

observed. If initial value of parasites is equal to zero, 00 y , then number of hosts will stabilize 
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asymptotically at this non-zero level 11 /)( baR  . In this case the origin is unstable stationary state, and at 

positive initial value of population hosts don’t eliminate. 

For the particular case when function Q  can be presented in the following form: 











Bx

Ay
QyxQ

1
),( , 

where A , 0 constB  are any positive parameters (for example, such functions are observed in Hassell’ 

model and Rogers’ model of parasite – host system dynamics; Sharov, 1986; Hassell, 1984), conditions of 

stability of the stationary state on the axis x  can be presented in the following manner. Taking into account 

that Jacobian matrix calculated in stationary point has the form 
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Thus, we have the following conditions for local stability of the stationary state )0,/)(( 11 baR  : 

1aR  , 
)(

)0(
1

1

aRc

b

y

Q







. 

3. Let’s consider the particular case when 












Bx

Ay
yxQ

1
exp),( .                                                      (7) 

In (7) x  is the number of survived hosts to the respective fixed time moment, y  is the number of survived 

parasites to the same time moment. These amounts are determined by the expressions (2). So, we have 














kkk

kk
kk Bxxbayba

xbaAy
yxQ

1122

11

)((

)(
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On Fig. 1 there is the bifurcation diagram for model (5) which was obtained for the following values of 

parameters: 1.01 a , 11 b , 2.02 a , 001.02 b , 3A , 1B , 1c . Parameter R  (host’s 

productivity) changes from 0 to 4 (Fig. 1a) or to 3 (Fig. 1b).  

Diagram (Fig. 1) was calculated under the following conditions. For every initial values of population sizes 

model had 10000 (“empty”) steps for converging to stable dynamic regime. For every value of parameter R  

number of various initial values of population sizes was 400.  

On Fig. 1a abscissa of stable stationary state )0,/)(( 11 baR   is out of the picture. But for all values of 

considering parameters this point is a stable attractor. Respectively, on Fig. 1b part of axis R  is of red color: 

Part of trajectories converges to this stable attractor.  

As we can see on this diagram (Fig. 1), if R  is small the origin is global stable state. Increase of the value 

of R  leads to appearance of the point )0,/)(( 11 baR   on axis x . On Fig 1a it corresponds to straight line 

1L  which is determined by the equation 
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Fig. 1 Bifurcation diagram for model (5) with 3A . a – changing of abscissas of stable attractors (pointed out on vertical 
axis); b – the same, for ordinates of stable attractors. 1L , 2L  are various branches of bifurcation diagram. 

 

 

Initially this point is global stable attractor, and parasites eliminate for all possible initial values of 

populations. Next bifurcation correlates with appearance of new branch 2L  of diagram on Fig. 1a. On Fig. 1b 

it corresponds to monotonic increasing curve. It is obvious that in such a situation we have to have unstable 

attractor in phase space with separatrix curves which separate zones of attraction of two stable equilibriums: 

non-trivial stationary state and )0,/)(( 11 baR  . Thus we have the dynamic regime (for 5.1R ) which 

contains two stable levels, and doesn’t contain stable cycles (respectively, algebraic system 

}0),(,0),({  yxGyxF  has three roots at least). This regime was called as fixed outbreak in Isaev – 

Khlebopros classification (Isaev et al., 1984, 2001, 2009; Nedorezov, 1986, 1997), and it can be observed in 

natural conditions.   

If ]2,5.1[R , we can observe complicated dynamical regimes which are out of any classifications of 

population dynamics. Algebraic system }0),(,0),({  yxGyxF  has at least five roots for non-negative 

values of variables.  

If 2R , we have a sequence of dynamic regimes which can be identified as analogs of the regime of 

fixed outbreak (with unstable non-trivial stationary state and existing stable periodic fluctuations of both 

populations). Further increasing of parameter R  leads to realization of very interesting population effect: if 

3R  point )0,/)(( 11 baR   becomes a global stable equilibrium again. The similar population effect is 

observed within the framework of modification of Beddington – Free – Lawton model of parasite – host 

system dynamics (Ivanchikov, Nedorezov, 2011). 
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Fig. 2 Bifurcation diagram for model (5) with 1A . a – changing of abscissas of stable attractors (pointed out on vertical axis); 
b – the same, for ordinates of stable attractors. 1L , 2L  are various branches of bifurcation diagram. 

 

 

The bifurcation diagram on Figure 2 was obtained for smaller value of parameter A : 1A . All other 

parameters of the system have the same values like on Fig. 1 (and conditions for drawing these pictures are the 

same). This diagram shows that we have the regime of elimination of both populations; we may have the 

regime with global stable equilibrium on x  axis )0,/)(( 11 baR  ; we may have various modifications of 

fixed outbreak (Isaev et al., 1984, 2001, 2009; Nedorezov, 1986, 1997). But sometimes we may have the 

regime of fixed outbreak with additional third stable attractor (Fig. 2) which can be characterized by big 

enough variation of population sizes.  

 

4 Conclusion 

At the beginning analysis of mathematical model of the Kolmogorov’ type of predator – prey system dynamics 

was in the base of Isaev – Khlebopros classification of forest insect population dynamics (Isaev et al., 1984, 

2001, 2009; Nedorezov, 1986, 1997). Later analyses of some other models of the same type (for example, 

model of population – food plant system dynamics, model of competition of two species etc.; Nedorezov, 1989, 

1995, 1999) allowed obtaining the similar results within the frameworks of these models. But all these models 

need in concrete modifications because ordinary differential equations don’t allow taking into account some 

basic characteristics, which are typical for insect populations in boreal zone. First of all, we have to take into 

account that development of insect populations has a synchronic type. Appearance of new generations is 

realized during short time period which is much smaller than the life time of individuals. Note, that in models, 

which were constructed as systems of ordinary differential equations, appearance of new individuals has a 

continuous nature that doesn’t correspond to reality. 

Moreover, high level of aggregation in a description of interaction between species in such models doesn’t 

allow giving a good answer on to the question about the nature of model which contains outbreak regimes: We 

have no chance to separate predator – prey and parasite – host systems. All these problems led to the necessity 

of further development of mathematical base for phenomenological theory of forest insect population 

dynamics (Isaev et al., 1984, 2001, 2009; Nedorezov, 1986, 1997). This publication is also devoted to the 

development of model base of pointed out ecological theory. 

It is obvious that considered model hasn’t high level of aggregation in a description of process of 

interaction between species like we have in models of the Kolmogorov’s type. On the other hand, considered 
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model we cannot interpret as a model of predator – prey system dynamics. Additionally, in model we took into 

account the discrete nature of the process of appearance of new generations, which is more suitable for the 

description of inset population dynamics in boreal zone.  

Analysis of properties of model showed that there is a rich set of dynamical regimes. Some of obtained 

regimes are well-known (fixed outbreak and various modifications of fixed outbreak). But some regimes are 

new and need in more detailed and deep analysis.  
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