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Abstract 

Current publication is devoted to analysis of well-known time series on the dynamics of pine looper moth 

(Bupalus piniarius L.) in national park De Hoge Veluwe (the Netherlands). For the approximation of every 

considering sample five various models with discrete time steps were used. Within the framework of every 

used model the influence of self-regulative mechanisms onto population size changing in time were took into 

account (and every used model had minimum number of unknown parameters). Estimations of model 

parameters were obtained at minimization of squared differences between theoretical (model) trajectories and 

empirical datasets (global fitting) for first ten values. Tails of samples (four or five points) were used for 

checking prognostic properties of models. Sets of deviations between theoretical and empirical trajectories 

were checked on Normality with zero average (Kolmogorov – Smirnov and Shapiro – Wilk tests), and were 

tested on absence/existence of serial correlation (Durbin – Watson criteria). Provided analysis showed that 

modified logistic model can only give sufficient approximation of empirical datasets. For parameters of this 

model confidence domains were determined, and for the situation when parameters belong to 90% confidence 

domain, forecasts of population size changing were constructed.  

 

Keywords pine looper moth; mathematical model; discrete time; time series; forecast. 

 

 

1 Introduction 

Pine looper moth (Bupalus piniarius L.) is one of most dangerous forest pests (Schwerdtfeger, 1944, 1968; 

Isaev et al., 1984, 2001, 2009; Vorontsov, 1978, 1982; Nedorezov, Utyupin, 2011). Thus, all problems which 

have relation to modeling of this pest dynamics and with preparing of scientific-based forecasts are among the 

most actual IPM tasks (Klomp, 1966; Palnikova et al., 2002, 2005; Kendall et al., 2005; Nedorezov, 2010). 

At present time it is possible to point out a big number of publications which are devoted to problems of 

analysis and description of pine looper moth population dynamics, and to collecting the respective datasets. On 

the other hand, modern mathematical models don’t allow using this collected information for the description of 

population dynamics and for constructing forecasts. It can be taken into account within the framework of 

imitation models but its using leads to the necessity to have a lot of additional assumptions and hypotheses. 

These additional assumptions and hypotheses need in respective substantiations, bases and so on. The similar 

problem arises when non-imitative models with several variables are used for approximation of real datasets: 

incorrect assumptions can lead to qualitative change of the final result (Turchin et al., 2003; Nedorezov, 2007). 
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This is why the use of simple mathematical models which don’t need in additional assumptions, special 

hypotheses, and take into account a small number of population regulative mechanisms, is very important 

element of initial stage of population dynamics analysis. If these models give sufficient description 

(approximation) of real datasets it gives certain possibilities for constructing scientific-based forecasts. 

Moreover, it gives a base for solution of the problem of population size optimal management. 

As it was obtained before (Nedorezov, 2010), the well-known time series on fluctuations of pine looper 

moth in De Hoge Veluwe national park (the Netherlands) (Klomp, 1966) can be sufficiently described by the 

trajectories of generalized discrete logistic model. It means that observed fluctuations of pine looper moth can 

be effectively explained as a result of influence of intra-population self-regulative mechanisms only.  

In current publication we use the same datasets (Klomp, 1966) but in other manner. Part of considering 

time series we use for estimation of model parameters, and the other part (tails of time series) we use for 

comparison of real trajectories with model forecasts (respectively, we use it for checking the prognostic 

properties of model). Taking into account that part of considering time series is used for model parameter’s 

estimations the final results can differ from results pointed out in our previous publication (Nedorezov, 2010). 

For one of the tails of time series we construct the set of forecasts: for maximum, minimum, and average of 

population density which take into account that real values of model belong to the respective confidence 

domain. 

 

2 Models 

In modern literature it is possible to find a huge number of various mathematical models of population 

dynamics (see, for example, Kostitzin, 1937; Bazykin, 1985; Isaev et al., 1984, 2001, 2009; Brauer, Castillo-

Chavez, 2001; Turchin, 2003; Nedorezov, 1986, 1997; Nedorezov, Utyupin, 2011; Kendall et al., 2005 and 

many others). In table 1 there are the simplest mathematical models of population dynamics which can be 

presented in the following form: 

),,(1 baxGx kk  ,                                                           (1) 

where G  is non-linear function, a , and b  are non-negative parameters, and kx  is population size (or density) 

at time k  (or moment of population size fixation). For obtaining model trajectories it is necessary to point out 

the initial value of population size 0x . Thus, all considering in current publication models contain three 

unknown parameters (i.e. parameters a  and b  which are presented in table 1 plus initial value of population 

size 0x  which must be determined by the real datasets too).  

 

 

Table 1 Models used for approximation of datasets 

Models* Source Name of the model (common or used 
in current publication) 

1 1
1 )1( 
  kkk bxaxx  Kostitzin, 1937 Kostitzin model 

2 )(1 kkk xbaxx   Moran, 1950; Ricker, 1954 Discrete logistic model 

3 )1(1
kbx

k eax 
   Skellam, 1951 Skellam model  

4 b
kk axx 

  1
1  Morris, 1959; Varley, Gradwell, 

1960, 1970 
Morris – Varley – Gradwell model  

5 kbx
kk eaxx 

 1  Moran, 1950; Ricker, 1954 Moran – Ricker model  

*Models have the same numbers in all tables 
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At the process of model parameter estimations all models were used in the form they are presented in table 

1. Only discrete logistic model was used in other form. Within the framework of this model it was assumed 

that population size can intersect the threshold level b , but after that population size becomes equal to zero 

identically. Thus, we used the discrete logistic model in the following form: 

)}(,0max{1 kkk xbaxx  .                                                  (2) 

It can be interpreted in the following way. Intersection by the population size of the level b  leads to local 

destruction of the whole ecosystem (Isaev et al., 1984, 2001, 2009). We have to note, that this modification of 

discrete logistic model (2) hasn’t additional limits for the values of model parameters: originally we have to 

have the realization of inequality 4ab  for obtaining non-negative trajectories for all values ],0[0 bx   

(table 1). At the same time without the inequality 4ab  we have problems with prognostic properties of this 

model (2): if 4ab  the origin becomes global stable state of equation (Nedorezov, 1986, 1997; Nedorezov, 

Utyupin, 2011).  

 

3 Datasets 

Analyzing time series on pine looper moth population dynamics (Fig. 1) can be free downloaded in Internet 

(NERC Centre for Population Biology, Imperial College (1999) The Global Population Dynamics Database, N 

2727, N 2728 и N 2729). In the first case (time series N 2727, Fig. 1a) all values are presented in units 

“average number of eggs per squared meter”; in the second case (time series N 2728, Fig. 1b) values are 

presented in units “average of larva per squared meter”; in the third case (time series N 2729, Fig. 1c) values 

are presented in units “average of pupae per squared meter”. In the first case the volume of sample is equal to 

15 (first element of the sample was obtained in 1950). In the second case the volume of the sample is equal to 

14: first element of this sample was also obtained in 1950 but the respective value for 1962 is absent. In the 

third case we have 14 elements in the sample: first value of this sample was obtained in 1951. On Fig. 1 time 
series are presented on the phase plane “population density x  – birth rate y ” where birth rate y equal to 

relation of values of population density of two nearest generations (Isaev et al., 1984, 2001, 2009): 

k

k
k x

x
y 1 ,                                                             (3) 

where k  is the number of year. 

All values were collected in the Netherlands, in the North-West part of the national park De Hoge Veluwe 

(total area of this park is equal to 20 ha) where Scottish pines are presented. Taking into account that all 

datasets were collected in one and the same place, in current situation we have strong correlated time series. 

And all these time series have relations to one and the same population process. In such a situation it is 

naturally to assume that if one of models allows us to obtain sufficient approximation of real dataset (with 

minimum of the sum of deviations squared between theoretical and empirical values among all considering 

models) then this concrete model must give us the best approximation for all other time series. As it was 

obtained before (Nedorezov, 2010), the generalized logistic model (2) gives the best approximation for time 

series on pine looper moth fluctuations (Fig. 1). All other models from the table 1 cannot give us a sufficient 

description of population dynamics. In current paper we use the first ten values of time series for determination 

model parameters, and in principle, it can lead to qualitative change of the situation with approximation of real 

datasets. 
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Fig. 1 Datasets on the pine looper moth fluctuations on the plane “population density – birth rate”: a – dataset on population 
density (GPDD, N 2727) in “average number of eggs per squared meter”; b – dataset on population density (GPDD, N 2728) in 
“average number of larvae per squared meter”; c – dataset on population density (GPDD, N 2729) in “average number of pupae 
per squared meter”. In first case the sample size is equal to 15 (first number was obtained in 1950), in the second case the sample 
size is equal to 14 (first number was obtained in 1950). In third case there are 14 numbers in the sample (first value of population 
density was obtained in 1951). x  is population density, y  is birth rate (3). 
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Visual analysis of pine looper moth population size changing (Fig. 1) shows that in some particular cases 

(see, for example, part of trajectory 1958-1962 for dataset N 2727, part of trajectory 1957-1960 for dataset N 

2728, part of trajectory 1958-1963 for dataset N 2729; Fig. 1) we can observe the behavior of trajectory which 

corresponds to outbreak trajectories (Isaev et al. 1984, 2001, 2009). In particular, there is the decreasing of 

birth rate (3) on the phase of population size increasing. The absence of “ring movements” of the system in the 

domains with small or high population levels allows us to conclude that pine looper moth  population 

fluctuations could be considered as an example of permanent outbreak. But for analysis of such difficult 

dynamic regimes we have to use more complicated mathematical models (which contains two or more 

dynamic variables). 

Nevertheless, following the logic of population dynamics analysis described in details in our previous 

publications (Nedorezov, Lohr, Sadykova, 2008; Nedorezov, Sadykova, 2008, 2010; Nedorezov, Sadykov, 

Sadykova, 2010; Tonnang et al., 2009, 2010), we have to start with simplest mathematical models (table 1) 

before using more complicated models. We have to be sure that in considering situation we have a sufficient 

volume of a sample. If we can obtain a sufficient approximation of considering datasets with the help of simple 

mathematical models, it can be the reason for conclusion that time series are rather short (thus, we haven’t 

sufficient volume of a sample), or for conclusion that hypothesis about difficult organized population 

dynamics must be rejected.  

As it was obtained before (Nedorezov, 2010), this situation is realized for the Klomp’s time series (Klomp, 

1966). For whole samples generalized discrete logistic model allows us to obtain the sufficient approximation 

of real trajectories. Thus, the use of shorter time series (parts of initial samples) will not lead to the situation 

when all considering models (table 1) will not be applicable for the approximation. 

 

4 Statistical Criterions 

Let }~{ tx  be the initial sample (results of observations of population size or density changing in time), 

Nt ,...,1,0 , where tx~  is a value of pine looper moth density at time moment t . 1N  is sample size. Let 

also G  be the non-negative non-linear function in the right-hand side of equation (1). Values of this function 

depend on population density and vector of unknown model parameters. The problem is: for existing sample 

}~{ tx  we have to estimate parameters of model (1). For this reason the following criteria was used: 

0,
0

2
0

)(
0 min)),(~(),(

x

M

t

t
t xGxxQ


 





,                                   (4) 

where )()( tG  are the iterations of function G , 00
)0( ),( xxG 


, 10

)1( ),( xxG 


 and so on; 


 is vector 

of unknown model parameters, M  is a number of used for estimation of model parameters values of the 

sample (it was assumed below that 10M ). In expression (4) the sum of squared deviations between 

theoretical (model) trajectory and empirical trajectory is minimized.  

It is important to note that finding of minimum value of functional form (4) will allows us to rank all 

models. But it cannot allow giving the final decision about suitability or unsuitability of one or other model for 

the approximation of real datasets. We’ll assume that model is suitable for fitting of empirical datasets if 

deviations between theoretical trajectory and empirical trajectory are the values of independent stochastic 

variables with symmetric (with respect to origin) distributions. It is obvious, if in the sequence of deviations 

we have any dependence, it means that model doesn’t take into account the respective population process (or 

take it into account in incorrect way). Thus, this model we have to consider as unacceptable for fitting of 

empirical time series.  
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First of all, we have to be sure that arithmetic average of the set of deviations is equal to zero. More 

precisely, we have to check the hypothesis 0H : 0Ee , where e  is stochastic variable (deviation), Ee  is 

expectation value, with alternative hypothesis 1H : 0Ee . And we have to be sure that there are no reasons 

for rejecting of the hypothesis 0H . Additionally, distribution of deviations must be symmetric, uni-modal, and 

monotonic decreasing (in positive part of real axis) and monotonic increasing (in negative part of real axis) 

function. On the other words, methods for data collections must satisfy the following condition: we can 

observe deviations of any value in both sides with equal probabilities.  

Checking of correspondence of the set of deviations to Normal distribution can be considered as sufficient 

condition for pointed out properties of the distribution of deviations. Moreover, if the set of deviations has this 

property (Normality) it gives a good base for checking of the independence of deviations: as it is well-known 

independence and noncorrelatedness are the same for Normal distributed stochastic variables. For checking of 

the Normality of deviations Kolmogorov – Smirnov criteria and Shapiro – Wilk criteria were used (Bolshev, 

Smirnov, 1983; Shapiro, Wilk, Chen, 1968). Additionally, as it was pointed out above, in the sequence of 

deviations we cannot have a serial correlation. For this reason Durbin – Watson criteria d  was used (Draper, 

Smith, 1986, 1987). Critical values of this criteria are the following: 7442.0Ld , 16461.1Ud  (for 

sample size 10, 2.5% significance level, and one predictor variable). If amount of d  which is determined by 

the formula: 











M

k
k

M

k
kk

e

ee
d

1

2

2

2
1 )(

,                                                     (5) 

where ke  is the deviation (it is determined in formula (4)), satisfies the inequality Ldd   or Ldd  4  it 

means that hypothesis about the absence of serial correlation in the sequence of residuals must be rejected with 

5% significance level. This hypothesis cannot be rejected if for statistics (5) the inequality UU ddd  4  

is truthful. All other values of d  (5) on the interval ]4,0[  belong to the zone of ambiguity. For 1% 

significance level critical values of statistics (5) are the following: 60452.0Ld , 0007.1Ud . 

If one of used statistical criterions gave the negative results then the assumption about suitability of model 

for fitting of empirical datasets was rejected. If all used statistical criterions gave positive results (i.e. we had 

no reasons to reject the hypothesis about the equivalence of average to zero, we couldn’t reject the hypothesis 

about the Normality of the set of deviations etc.) then we can conclude that model gives the sufficient 

approximation of datasets. After calculations models which gave the sufficient approximation of datasets were 

compared between each other with criteria (4). 

 

5 Results of Calculations 

In Table 2 there are the estimations of model parameters (Table 1) for the considering time series (Fig. 1). For 

the first time series (Fig. 1a) Moran – Ricker model allowed obtaining the best approximation. At the same 

time the value of parameter a  is in non-biological zone. The similar result for Moran – Ricker model is 

observed for the second time series (Table 2): in both situations the value of parameter a  is much bigger than 

maximum of productivity of pine looper moth (Schwerdtfeger, 1944, 1968; Isaev et al., 1984, 2001, 2009; 

Vorontsov, 1978, 1982; Palnikova et al., 2002, 2005; Nedorezov, 2010). Application of Moran – Ricker model 

for thr fitting of third time series showed (Table 3) that there is the negative serial correlation: statistics (5) 
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47.0d  and it is less then critical level 60452.0Ld . Thus, the hypothesis about the absence of serial 

correlation in the sequence of residuals must be rejected with 2% significance level (at two-side criteria). 

 

 

Table 2 Estimations of model parameter’s values and respective value of minimizing functional (for first ten values of time series) 

Models Estimations of model parameters Functional 
 

0x  a  b  
minQ  

Results for the first sample (GPDD N 2727) 
1 72.92 0.87 7.47·10-20 10016.2 
2 37.45 4.57·10-2 87.45 5403.4 
3 72.92 873542022.06 9.97·10-10 10016.2 
4 72.92 0.87 5.14·10-17 10016.2 
5 34.49 5970.72 0.21 4003.4 
Results for the second sample (GPDD N 2728) 
1 7.7 122484166054.27 15614128777.97 414.1 
2 6.04 0.25 17.07 66.6 
3 12.27 87332408.73 1.03·10-8 347.1 
4 12.27 0.9 2.4·10-16 347.1 
5 6.4 137665.77 1.65 105.8 
Results for the third sample (GPDD N 2729) 
1 5.33 1.1 0.13 8.3 
2 3.38 2.31 3.87 9.6 
3 5.35 4.93 0.22 8.2 
4 5.24 1.02 0.26 8.6 
5 5.37 1.06 0.098 8.2 

 

 

 

Table 3 Results of analyses of deviations between real datasets and theoretical trajectories 

Models Average ± S.E. KS1 SW2 DW3 
Results for the first sample (GPDD N 2727) 
1 0.1902±10.55 0.16139/p>0.2 0.93011/p=0.44902 1.505 
2 -2.448±7.71 0.23105/p>0.2 0.93874/p=0.53909 1.601 
3 0.1902±10.55 0.16139/p>0.2 0.93011/p=0.44902 1.505 
4 0.1902±10.55 0.16139/p>0.2 0.93011/p=0.44902 1.505 
5 -2.485±6.62 0.11945/p>0.2 0.98732/p=0.99236 1.997 
Results for the first sample (GPDD N 2728) 
1 0.0±2.15 0.189/p>0.2 0.88739/p=0.15846 2.054 
2 -0.273±0.86 0.20402/p>0.2 0.92769/p=0.42552 1.975 
3 0.045±1.96 0.17802/p>0.2 0.94043/p=0.55779 2.477 
4 0.05±1.96 0.17802/p>0.2 0.94043/p=0.55779 2.477 
5 -0.954±1.06 0.14267/p>0.2 0.96208/p=0.80934 1.34 
Results for the first sample (GPDD N 2729) 
1 -0.005±0.3 0.18203/p>0.2 0.92681/p=0.41728 0.471 
2 -0.241±0.32 0.17798/p>0.2 0.93671/p=0.51706 1.986 
3 -0.004±0.3 0.18239/p>0.2 0.92693/p=0.41835 0.47 
4 -0.003±0.31 0.15946/p>0.2 0.93587/p=0.50802 0.496 
5 -0.003±0.3 0.18275/p>0.2 0.92654/p=0.41472 0.47 

1KS – Kolmogorov – Smirnov criteria; 2SW – Shapiro – Wilk criteria; 3DW – Durbin – Watson criteria 
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Let’s note that for all models (excluding generalized discrete logistic model) the negative serial correlation 

is observed for third time series. Application of models for fitting of first and second time series gave positive 

results. There are no reasons for rejecting the hypotheses about the Normality of deviations (even at 10% 

significance level). There are no reasons also for rejecting the hypotheses about the absence of serial 

correlation in the sequence of residuals (also at 10% significance level and two-side criterion). 

Thus, like in previous case (Nedorezov, 2010) when model from the Table 1 were compared at 

approximation of whole time series, we have the only model (generalized discrete logistic model) which gives 

us a sufficient approximation of real datasets. It is important to note that this model doesn’t give the best 

approximation for some particular cases (Table 3). 

 

6 Forecast 

Prognostic properties of models can be compared with various methods. For example, it is possible to compare 

sums of deviations squared which were obtained for the tails of time series and model trajectories which were 

calculated with the best estimations of model parameters (Table 4). For the time series N 2727 the best 

approximation was obtained with the help of Moran – Ricker model (Table 2). At the same time the sum of 

deviations squared for the tail of time series is much bigger than the respective sums obtained for all other 

models (Table 4). The smallest sum for the tail of this time series was obtained with the help of generalized 

discrete logistic model, and this sum in ten times less than the respective sum obtained with the help of Moran 

– Ricker model. 

 

 
Table 4 Total sums of squared deviations for theoretical and  
real datasets for “tails” of time series 

 Time series 
Models N 2727 N 2728 N 2729 
1 11600.1 443.6 36.1 
2 4047.6 556.2 85.5 
3 11600.1 722.3 36.3 
4 11600.1 722.3 33.3 
5 86376.8 149951.3 36.5 

 

 

For the dataset N 2728 the best approximation was obtained with the help of generalized discrete logistic 

model (Table 2). At the same time the best forecast was realized at using of Kostitzin model, which showed 

very bad approximation for first ten values of time series (Table 2). In third case N 2729 generalized discrete 

logistic model showed the most bad result in approximation (Table 4). For all other models we have better 

results. It is interesting to note that in two first situations the worst results were obtained with the help of 

Moran – Ricker model (Table 4); in the last case the prognosis obtained with Moran – Ricker model can be 

compared with results obtained with all other models. 

Thus, we can conclude that model which gives the best approximation for considering datasets (among all 

models of any selected group) and satisfies to group of certain statistical criterions, may not give the best 

forecast of population dynamics. On the other words, the best approximation of real datasets by any 

mathematical model isn’t the guarantee for obtaining the best forecast. Moreover, models which don’t satisfy 

to some statistical criterions and, respectively, cannot be marked as suitable for fitting of empirical datasets, 

can give better prognosis with respect to models which are suitable for fitting datasets. It is necessary to point 
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out again: we talked above about the forecasts which can be obtained with the best values of model parameters 

only. 

Let’s consider shortly other possible variants of prognosis constructing for population size changing in 

time. We’ll confine ourselves by the use of time series N 2727 and generalized discrete logistic model.  

Taking into account that initial sample is the sequence of values of any stochastic variables, estimations of 

model parameters (which were obtained on the base of this sample) are the stochastic variables too. Thus, 

constructing of forecasts must take into account that real values of model parameters belong to any confidence 

domains. On Figures 2 and 3 there are the intersections of confidence domains (on Fig. 2 there is the 

intersection of confidence domain by the plane 45.370 x ; on Fig. 3: there is the intersection by the plane 

0456.0a ) for the parameters of generalized discrete logistic model. Boundaries of confidence domains 

were determined with the help of formula (Draper, Smith, 1986, 1987): 












 ,,(1)ˆ,ˆ,ˆ(),,( 00 pNpF

pN

p
baxQbaxQ ,                               (6) 

 

where 0x̂ , â , and b̂  are the optimal values of models parameters which give a global minimum for functional 

form Q  (Table 2); p  is number of unknown parameters of model ( 3p ); pN   is a volume of sample 

size minus number of unknown parameters; F  is Fisher’ distribution with p  and pN   degrees of freedom; 

  is significance level. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Section of confidence domains by the plane 45.370 x . 1, 2, 3, 4 are the bifurcation lines 1ab , 2ab , 

3ab  and 4ab  respectively. Domain with yellow color corresponds to 90% confidence domain. Domain with yellow 

and red colors together corresponds to 95% confidence domain. Domain with yellow, red, and blue colors together corresponds 

to 99% confidence domain. Intersection of strait lines 1L  and 2L  gives the point of global minimum of the functional form Q . 
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Fig. 3 Section of confidence domains by the plane 0457.0a . 1, 2, 3, 4 are the bifurcation lines 1ab , 2ab , 

3ab  and 4ab  respectively. Domain with yellow color corresponds to 90% confidence domain. Domain with yellow 

and red colors together corresponds to 95% confidence domain. Domain with yellow, red, and blue colors together corresponds 

to 99% confidence domain. Intersection of strait lines 1L  and 2L  gives the point of global minimum of the functional form Q . 

 

 

Let   be the 90% confidence domain (Fig. 2 and 3), and let ]210,0[]2,0[]150,0[  . Numerical 

calculations show that  . Modeling the stochastic points with rectangular distribution in  , and 

deleting all points belonging to  \  we obtain rectangular distributed points in   (Mikhilov, 1974; 

Ermakov, 1975). In initial sample all values of population density are positive, respectively, for constructing 

the forecast with generalized discrete logistic model we used trajectories with positive values only (for the first 

15 values of trajectory – after that it could be equal to zero). It is important to note that we had about 98.7% of 

all trajectories with zero values at initial 15 steps (and these trajectories were deleted and didn’t use for 

constructing of the prognosis). Additionally, effectiveness of algorithm (relation of number of points which 

were hit in  , to number of all modeled points) is about 0.028.  

First of all, it is very interesting for practice to estimate the possible swing of population fluctuations. On 

Fig. 4 blue curves 2 and 3 correspond to maximum and minimum values of population density (these values 

were obtained for all trajectories with parameters from  ). Note, that on Fig. 4 blue curve 3 is upper abscissa: 

values of this curve belong to the interval ]463.0,0495.0[ . The second which is also of the practice interest, 

is the behavior of average of population density. But in this situation we have two qualitatively different 

possibilities: we can take into account or not the “probabilistic structure” of the confidence domain   (it is 

obvious, that various sub-domains of   have various probabilities – all confidence domains form one-

parametric family with respect to significance level). 
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Fig. 4 Forecasts of the pine looper moth population dynamics with generalized discrete logistic model (for first time series, 

GPDD N 2727). Line 1 corresponds to real dataset; 2 and 3 (thick blue lines) correspond to maximum and minimum values of 

population densities respectively, line 4 (dashed-line red curve) is the trajectory of model, which was obtained with best model 

parameters, 5 and 6 (broken lines) correspond to mean values of population densities, which were obtained with an allowance for 

“probabilistic” structure of confidence domain and without it respectively. 

 

 

If we don’t take into account the “probabilistic structure” of confidence domain  , and assume that true 

values of population parameters can belong to various parts of   with equal probabilities, then we obtain the 

curve 6 (Fig. 4; average values were obtained for 7904 trajectories). Sum of squared deviations for this curve 

from empirical trajectory is equal to 4977.4. It isn’t so good forecast like obtained with the help of model with 

best parameters. But it is much better than forecasts obtained with all other models (Table 4). 

For taking into account the “probabilistic structure” of confidence domain  , we used the following 

algorithm: 

1. Stochastic points ),,( 0 bax  in   with rectangular distribution were obtained. For every obtained point 

  the value of functional form )(Q  (4) was calculated. 

2. On the interval ]),ˆ,ˆ,ˆ([ *
0 QbaxQ  where )ˆ,ˆ,ˆ( 0 baxQ  is minimum value of functional form Q , and *Q  is 

the value of Q  defined by the relation (6) with significance level 1.0 , values of stochastic variable   

with rectangular distribution were obtained. 

3. If the inequality *Q  was truthful we returned back to the point 1. If the inverse inequality, *Q , 

was truthful point   was used for calculating of the model trajectory. This algorithm (exclusion method by 

John von Neumann; Mikhilov, 1974; Ermakov, 1975) allows obtaining values of stochastic points with 

proportional to Q/1  distribution  

Curve 5 (Fig. 4) was calculated with this algorithm (mean values were calculated for 1000 trajectories of 

the model). The sum of deviations squared for this curve 5 is equal to 4504.96. It is better than in previous case 

(when “probabilistic” structure wasn’t take into account). But we have to note that forecast obtaining with 

model with best values of parameters is much better. 
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7 Conclusion 

Analysis of time series on pine looper moth population densities fluctuations (Klomp, 1966) showed that in the 

Netherlands in national park De Hoge Veluwe where datasets were collected, this insect hasn’t eruptive 

properties (which are observed in other locations; Isaev et al., 1984, 2001, 2009). For all analyzed time series 

(on eggs, larvae, and pupae densities changing in time) there exists one mathematical model only (generalized 

discrete logistic model) which gives sufficient approximation for empirical datasets. On the other words, all 

used statistical criterions didn’t allow us to reject the respective hypotheses (about the equivalence of averages 

of deviations to zero, about the Normality of the sets of deviations, and about the absence of serial correlation 

in the sequences of residuals). These results of applications of statistical criterions mean that we have the 

respective base for conclusion that model gives us the sufficient approximation of real trajectories. 

Existence of simple mathematical model with such a property, allows us to make the following conclusion: 

observed fluctuations of population densities can be explained as a result of influence of intra-population self-

regulative mechanisms only.  

Constructing of various forecasts with the help of simple mathematical models showed that not in all 

situations models (which satisfy to various statistical criterions and give sufficient approximation of datasets) 

allow us to obtain the best forecasts. Moreover, sometimes models (which don’t satisfy to various statistical 

criterions and don’t give sufficient approximation of datasets) allow obtaining the best prognoses. If it is 

observed within the group of models of the same level (which take into account the same sets of regulative 

mechanisms and the same sets of unknown parameters) it means that the process of finding of best model 

wasn’t finished yet, and more complicated models must be applied for fitting of time series. 

 

Acknowledgement 

This publication was supported by RFFI grant 11-04-01295. 

 

References 

Bazykin AD. 1985. Mathematical biophysics of interacting populations. Nauka, Moscow, Russia (in Russian) 

Bolshev LN, Smirnov NV. 1983. Tables of Mathematical Statistics. Nauka, Moscow, Russia (in Russian) 

Brauer F, Castillo-Chavez C. 2001. Mathematical Models in Population Biology and Epidemiology. Springer-

Verlag, New York, USA 

Draper NR, Smith H. 1986. Applied Regression Analysis. V.1. Finance and Statistics, Moscow, Russia (in 

Russian) 

Draper NR, Smith H. 1987. Applied Regression Analysis. V.2. Finance and Statistics, Moscow, Russia (in 

Russian) 

Ermakov SM. 1975. Monta Carlo Method and Closely-related Questions. Nauka, Moscow, Russia (in Russian) 

Isaev AS, Khlebopros RG, Nedorezov LV, et al. 1984. Forest Insect Population Dynamics. Nauka, Moscow, 

Russia (in Russian) 

Isaev AS, Khlebopros RG, Nedorezov LV, et al. 2001. Population Dynamics of Forest Insects. Nauka, 

Moscow, Russia (in Russian) 

Isaev AS, Khlebopros RG, Nedorezov LV, et al. 2009. Forest Insect Population Dynamics. KMK, Russia  

Kendall BE, Ellner SP, McCauley E, et al. 2005. Population cycles in the pine looper moth: dynamical tests of 

mechanistic hypotheses. Ecological Monographs, 75(2): 259-276 

Klomp H. 1966. The dynamics of a field population of the pine looper, Bupalus piniarius L. (Lep., Geom.). 

Advances in Ecological Research, 3: 207-305 

Kostitzin VA. 1937. La Biologie Mathematique. A.Colin, Paris, France 

81



Proceedings of the International Academy of Ecology and Environmental Sciences, 2012, 2(2):70-83 

 IAEES                                                                                                                                                                        www.iaees.org

Mikhilov GA. 1974. Some Questions of the Theory of Monte Carlo Methods. Nauka, Novosibirsk, Russia (in 

Russian) 

Moran PAP. 1950. Some remarks on animal population dynamics. Biometrics, 6(3): 250-258 

Morris RF. 1959. Single-factor analysis in population dynamics. Ecology, 40: 580-588 

Nedorezov LV. 2007. Influence of food plant quality and parasitism on the cyclic fluctuations of larch bud 

moth. Euro-Asian Entomological Journal, 6(2): 229-244 (in Russian) 

Nedorezov LV. 1986. Modeling of Forest Insect Outbreaks. Nauka, Novosibirsk, Russia (in Russian) 

Nedorezov LV. 1997. Course of Lectures on Ecological Modeling. Siberian Chronograph, Novosibirsk (in 

Russian) 

Nedorezov LV. 2010. Analysis of pine looper population dynamics with discrete time mathematical models. 

Mathematical Biology and Bioinformatics, 5(2): 114-123 (in Russian) 

Nedorezov LV, Lohr BL, Sadykova DL. 2008. Assessing the importance of self-regulating mechanisms in 

diamondback moth population dynamics: Application of discrete mathematical models. Journal of 

Theoretical Biology, 254: 587–593 

Nedorezov LV, Sadykov AM, Sadykova DL. 2010. Population dynamics of green oak leaf roller: applications 

of discrete-continuous models with non-monotonic density-dependent birth rates. Journal of General 

Biology, 71(1): 41-51 (in Russian) 

Nedorezov LV, Sadykova DL. 2008. Green oak leaf roller moth dynamics: An application of discrete time 

mathematical models. Ecological Modelling, 212: 162-170 

Nedorezov LV, Sadykova DL. 2010. Analysis of population time series using discrete dynamic models (on an 

example of green oak leaf roller). Lesovedenie, 2: 14-26 (in Russian) 

Nedorezov LV, Utyupin YuV. 2011. Continuous-Discrete Models of Population Dynamics: An Analytical 

Overview. Ser. Ecology. Vip. 95. State Public Scientific-Technical Library, Novosibirsk, Russia (in 

Russian) 

Palnikova EN, Sviderskaya IV, Soukhovolskii VG. 2002. Pine looper in Siberian forests: Ecology, population 

dynamics, and influence onto plants. Nauka, Novosibirsk, Russia (in Russian) 

Palnikova EN, Soukhovolskii VG, Tarasova OV. 2005. Forest Entomology. Methods for Population Dynamics 

Analysis and Conditions of Individuals of Forest Insects. Siberian State Technological University, 

Krasnoyarsk, Russia (in Russian) 

Ricker WE. 1954. Stock and recruitment. Journal of the Fisheries Research Board of Canada, 11(5): 559-623 

Schwerdtfeger F. 1944. Die Waldkrankheiten. Verlag Paul Parey, Berlin, Germany 

Schwerdtfeger  F.  1968. Okologie   der   Tiere.  2.   Demokologie. Verl. Paul Parey,  Berlin, Germany 

Shapiro SS, Wilk MB, Chen HJ. 1968. A comparative study of various tests of normality. Journal of the 

American Statistical Association, 63: 1343-1372 

Skellam JG. 1951. Random dispersal in theoretical populations. Biometrics, 38: 196-218 

Tonnang H, Nedorezov LV, Ochanda H, et al. 2009. Assessing the impact of biological control of Plutella 

xylostella through the application of Lotka – Volterra model. Ecological Modelling, 220: 60-70 

Tonnang H, Nedorezov LV, Owino J, et al. 2010. Host–parasitoid population density prediction using artificial 

neural networks: diamondback moth and its natural enemies. Agricultural and Forest Entomology, 12(3): 

233-242 

Turchin P. 2003. Complex Population Dynamics: A Theoretical/Empirical Synthesis. Princeton University 

Press, USA 

Turchin P, Wood SN, Ellner SP, et al. 2003. Dynamical effects of plant quality and parasitism on population 

cycles of larch budmoth. Ecology, 84(5): 1207-1214 

82



Proceedings of the International Academy of Ecology and Environmental Sciences, 2012, 2(2):70-83 

 IAEES                                                                                                                                                                        www.iaees.org

Varley GC, Gradwell GR. 1960. Key factors in population studies. Journal of Animal Ecology, 29: 399-401 

Varley GC, Gradwell GR. 1970. Recent advances in insect population dynamics. Annual Review of 

Entomology, 15: 1-24 

Vorontsov AI. 1978. Forest Pathology. Forest Industry, Moscow, Russia (in Russian) 

Vorontsov AI. 1982. Forest Entomology. High School, Moscow, Russia (in Russian) 

 

 

83




