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Abstract 

Biodiversity sampling is a very serious task. When biodiversity sampling is not representative of the 

biodiversity spatial pattern due to few data or uncorrected sampling point locations, successive analyses, 

models and simulations are inevitably biased. In this work, I propose a new solution to the problem of 

biodiversity sampling. The proposed approach is proficient for habitats, plant and animal species, in addition it 

is able to answer the two pivotal questions of biodiversity sampling: 1) how many sampling points and 2) 

where are the sampling points. 
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1 Introduction 

Solutions on sampling strategy for fitting predictive biodiversity distribution models can be found in relatively 

few papers (e.g. Guisan and Zimmermann, 2000) or books (e.g. Jongman et al., 1995), and only few of them 

supply adequate guidelines. A common statement is that a sampling strategy should be based on those 

gradients that exercise major control over the distribution of species of interest, and these gradients should be 

used to stratify sampling (Austin and Heyligers, 1991). The main environmental gradients in the study area can 

be identified in a preliminary exploratory analysis and then used to define a sampling strategy that is especially 

designed to meet the requirements of the model purposes (Mohler, 1983). 

The four strategies most frequently used are: 1) regular sampling, for instance along the two geographic 

dimensions of a grid covering the study area, 2) random sampling, 3) equal random-stratified sampling, where 

the study area is first split into environmental strata and an equal number of plots is randomly chosen in each, 

4) proportional random-stratified sampling which is similar to the previous one, but the number of plots 

randomly chosen in each stratum is proportional to its coverage in the study area. 

Since the results achieved by the previous approaches are usually disappointing, in this work I propose a 

new solution to the problem of biodiversity sampling. The proposed approach is proficient for habitats, plant 

and animal species, in addition it is able to answer the two pivotal questions of biodiversity sampling: 1) how 

many sampling points and 2) where. 

 

2 Proposed Solution 

Conceptually, we can think of biodiversity sampling optimization as the pursuit of the following benefit-cost 

function maximization: 
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effort sampling

info ecological sampled
max     (1) 

 

where the sampling effort can be easily conceived as a function of the number of sampling points and their 

average geographical distance, while ecological information (habitats, plant and animal species) could be a 

priori measured using common proxies of biodiversity (topographic, land cover and land use variables). The 

wider the range of proxies (e.g. elevation, acclivity, slope aspects, land cover types, soil types, 

geomorphological types and so on) at sampling points the higher the chance to sample a wider spectrum of 

biodiversity (habitats, plant and animal species). Shannon’s evenness index (Shannon and Weaver, 1962), 

calculated for each variable and summed up for n variables, is  ideal to the aim of measuring the wideness of 

biodiversity proxies. 

In order to put equation (1) into an algorithmic and operative form, let n be the number of proxies that 

explain the biodiversity spatial pattern (each variable should be represented by a GIS layer; e.g. a layer for 

elevation above sea level, a further layer for soil types and so forth); k the number of intervals chosen for the n 

variables (in fact Shannon’s evenness index requires that variables are split into intervals); s the number of 

sampling points; Ds the average distance among sampling points. Hence, the sampling function (SF) to be 

maximized could be written in the form: 
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where pij is the proportion of sampling points that falls in the j-th interval of the i-th variable. There are 2 

parameters (n and k that must be chosen at the beginning of the sampling algorithm) and 2 variables (s and the 

“hidden” variable X-Y coordinates of such s points). Instead, Ds is just a function of the s points and their 

correspondent coordinates. 

Since the numerator ranges between 0 (when Shannon’s evenness index is 0 for every variable) and n 

(when Shannon’s evenness index is 1 for every variable) while the denominator ranges between 0 and s*Ds, a 

normalization is required to keep the denominator in the 0-n interval. In fact, if SF would be like above, the 

maximization algorithm would be likely induced to minimize the denominator instead of working on both the 

numerator and the denominator. I propose to fix this bias using the following final formula: 
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where Smax (maximum number of sampling points) is a parameter chosen at the beginning of the sampling 

algorithm, and Dsmax is the maximum possible distance within the study area (i.e., diameter of the study area). 

In this way, both numerator and denominator range in the 0-n interval. 
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Last, I propose to apply genetic algorithms (GAs; Holland, 1975; Goldberg, 1989) in order to solve SF as a 

function of s and X-Y coordinates of such s points. GAs consist of optimization procedures based on principles 

inspired by natural selection. GAs involve “chromosomal” representations of proposed problem solutions 

which undergo genetic operations such as selection, crossover and mutation. GAs can proceed by generating 

X-Y coordinates on the surface of the study area and, each time, by recalculating SF. To this aim, I suggest 

that the study area could be partitioned into homogeneous cells (pixels) or segments in case the study area 

corresponds to a river or a stream, and each cell could be assigned an identification number representing a 

candidate solution for the optimization GAs process. Each identification number is a gene used by the GAs 

procedure. Hence, a chromosome would be a vector having a number of genes equal to the amount of 

optimized sampling points (Parolo et al., 2009). In a s-points scenario, each chromosome is hence composed 

by a string of s identification numbers (pixels or segments) that represent a feasible solution to the problem of 

biodiversity sampling optimization. In order to compute all the previous calculations, I have developed an ad 

hoc module called BOS (Biodiversity Optimal Sampler) for the free GIS GRASS (Neteler and Mitasova, 

2008). 

 

3 Conclusions 

Biodiversity sampling is a very serious task. When biodiversity sampling is not representative of the 

biodiversity spatial pattern in the study area due to few data or uncorrected sampling point locations, 

successive analyses, models and simulations are inevitably biased. 

In this paper, I’ve offered a solution to the problem of optimal biodiversity sampling. I provide consultancy 

to any research or working groups that decide to apply my biodiversity sampling algorithm to their study areas. 
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