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Abstract 

Ecological changes are driven by changes in land use. Modeling land use change is an essential step to 

adaptively manage ecosystem to mitigate the negative impacts of such ecological changes. This study 

developed a parcel-based spatial land use change prediction model by coupling a couple of machine learning 

and interpretation algorithms: cellular automata and decision tree. The model was developed and validated 

using the historical land use data in Hunterdon County of New Jersey in the United States. Specifically, the 

data on historical land uses and various driving factors that affect land use changes for Hunterdon County were 

collected and processed using a Geographic Information System. A set of transition rules illustrating the land 

use change processes during the period 1986-1995 were developed using decision tree J48 Classifier. The 

derived transition rules were applied to the 1995 land use data in a cellular automata model Agent Analyst to 

predict future spatial land use pattern, which were then validated by the actual land use in 2002. The decision 

tree-based cellular automata model has reasonable overall accuracy of 84.46 percent in predicting land use 

changes and the Cohen’s Kappa Index is 0.644. The model shows much higher capacity in predicting the 

quantitative changes than the locational changes in land use. Sensitivity analysis indicates that simply 

changing the size of neighborhood has slight impacts on the simulation results, but insignificant impacts on the 

model accuracy. 

 

Keywords land use change; cellular automata; decision tree; parcel; geographic information system; J48 

Classifier; Agent Analyst. 

 

 

1 Introduction 

Land use in the United States and many other parts of the world has been experiencing rampant changes over 

the last several decades because of the profound social and economic changes in the society. Land use changes 

not only in return bring about significant social and economic changes, but also have profound impacts on 

human health and the natural environment. Since such changes result from the interplay of complex 

socioeconomic and biophysical processes, they are impossible to duplicate through experiments (Walker, 2003; 

Verburg et al., 2004). Modeling becomes an important tool to simulate land use changes (Baker, 1989; 

Briassoulis, 2000).  Appropriately calibrated land use change models can be used to predict future land use 

changes and to explore land use system response to policy interventions through “what-if” scenarios for local, 
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regional and/or global land use decisions (Riebsame et al., 1994; Pielke et al., 1999; Kalnay and Cai, 2003; 

Reid et al., 2004; Salmun and Molod, 2006).   

Land use change modeling has become sophisticated with substantial advances in spatial sciences and 

technologies. Cellular automata (CA) emerged as one of the most effective tools to simulate local and regional 

land use changes (White and Engelen, 1993; Clarke et al., 1997; Batty et al., 1999; Chen et al., 2002; Cheng 

and Masser, 2004). CA is a collection of cells that evolves through a number of discrete time steps according 

to a set of rules based on the states of its neighboring cells. In a CA-based land use change model, a cell is 

defined as the smallest geographic unit where land use changes are being evaluated. CA has five principal 

elements: cell state, lattice, neighborhood, time and transition rule. Cell state represents one of finite land use 

types that a cell is in. Lattice refers to the space in which the CA exists and evolves over time and usually 

represents the geographic region under consideration. The neighborhood comprises the localized region in a 

CA lattice and is a group of cells surrounding the cell being assessed. Transition rules specify how cells 

change from one state to another based on cell’s own state and its neighborhood conditions. The complication 

of CA-based land use change models depends on how cell, cell states, neighborhood and the transition rules 

are being defined. 

Early CA-based land use change models tended to define the cell as regular square-shaped grids because 

most land use maps are prepared using the conventional per-pixel land use classification derived from the 

spectral signature of a regular pixel. These models using regular grids can be easily integrated with a raster 

Geographic Information Systems (GIS). Recent development in CA-based land use change modeling defines 

the cell as irregular cadastral parcel (Stevens et al., 2007). Parcels are generally recognized as the most proper 

unit of analysis to evaluate land use changes (Landis and Zhang, 1998a, 1998b; Irwin and Geoghegan, 2001; 

Allen and Lu, 2003). Many land use decisions such as purchasing, selling, and developing land are made and 

observed at the parcel level. It is at the parcel level that most land use policies such as zoning are crafted and 

implemented.  

Another significant progress in CA-based land use change modeling is the development of the methods 

that elicit the transition rules, i.e. how various driving factors such as the initial state of the parcel being 

evaluated, land use conditions of the neighboring parcels, suitability, accessibility to roads and sewers, local 

and regional land use regulations and policies collectively dictate local land use changes. Traditional land use 

change models defined the transition rules using the regression models. Regression analyses are dependent on 

expert knowledge and as such prone to subjectivity bias as discussed by Verburg et al. (2004). Recent CA-

based land use change models developed several new methods to elicit realistic and objective transition rules. 

Wu (1996) introduced the fuzzy logic in a land use change model to evaluate the impacts of different urban 

development policies. Li and Yeh (2002) and Pijanowski et al. (2002) used artificial neural networks to elicit 

land use change patterns based on the information on the existing land use change and their driving factors. 

Some CA-based land use change models incorporate stochastic transition rules to imitate stochastic land use 

change processes (Ward et al., 2000; de Kok et al., 2001; Guan et al., 2005).  Decision Tree (DT), a machine 

learning and interpretation algorithm for classification, has also been used to elicit the transition rules in CA-

based land use change models (Li and Yeh, 2004; McDonald and Urban, 2006; Liu et al., 2007).  

This study also aims to develop a loosely coupled CA-based land use change model by applying DT to 

elicit the transition rules that govern land use changes for evaluating the impacts of urban growth management 

policies. The model will use irregular cadastral parcel as the basic unit of analysis. It also uses the more 

realistic and finer land use classification types instead of a simple, dichotomous, urban/non-urban 

classification scheme. DT will help address a greater range of complications and avoid the subjectivity bias 

when eliciting transition rules from numerous driving factors and neighborhood effects. The machine learning 
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and interpretation approach for deriving transition rules does not require extensive quantitative skills and 

would be better appreciated by non-technical users such as stakeholders and land use change decision makers. 

The coupled DT and CA-based land use change model are implemented through a GIS-based Agent Analyst 

model Recursive Porous Agent Simulation Toolkit (RePAST) (North et al., 2005). The coupled land use 

change model is applied to Hunterdon County, New Jersey, where dramatic land uses have taken place during 

last three decades. 

 

2 Study Area  

Hunterdon County is one of 21 counties in New Jersey in the United States and encompasses 1,094 km2 of the 

western portion of the State. It ranks eighth among New Jersey’s counties in terms of land area and has 26 

municipalities. As shown in Fig. 1, the County is traversed from east to west by the I-78 interstate highway 

designed to carry traffic between regions of the state and to serve as a corridor between Port Newark/Liberty 

Airport and points westward.  Accessibility between municipalities and adjoining counties is provided by a 

network of county and municipal roads that includes Routes 12, 31, 202, and 517. Hunterdon County is home 

to approximately 129,000 people (NJDLWD, 2006). The population in Hunterdon County grew by 87 percent 

between 1970 and 2004 making it the third fastest growing county in New Jersey. Hunterdon County also 

experienced considerable economic growth owing to its proximity to high growth areas in the state as firms 

like Exxon, Foster Wheeler, and Merck established their corporate offices in the county in 1980s and 1990s. 

Hunterdon County is still considered to be a mostly rural and suburban county. Population growth and 

economic development has been shaping the land use pattern in the county. The high density residential 

developments are more typical during the 1970s and 1980s. However, residential development has been 

gradually shifted to single-family houses on large lots during the last two decades. Hunterdon is one of six 

counties situated in an extensive growth area known as ''the wealth belt'' characterized by high property values, 

high population, plenty of jobs and high personal income” (Hughes and Seneca, 1999). Such trend is 

accelerated by the “ratables chase” policy in New Jersey that encourages local governments to permit more 

development to maintain the low property tax rate and to finance their public service requirements such as 

sewer, solid waste collection (HCPB, 2007). To maintain the appearance of a rural and agricultural character, 

some communities in the county are implementing the large-lot zoning that requires at least 0.8-, 2- and 4-

hectare (two-, five- or ten-acre) lots for residential homes. On the other hand, various land use policies have 

been implemented in the county to restrict the land use development toward smart growth and environmental 

protection. The notable examples are open space preservation, farmland preservation, and purchase of 

development rights. About 13 townships, towns, and boroughs in Hunterdon County fall partly or completely 

within the Highlands Preservation Area. Their future land use development will be subject to more stringent 

restrictions enforced by the New Jersey Highlands Water Protection and Planning Act (NJDEP, 2005).    

 

3 Methods 

The coupled land use change prediction model has two modules: a DT module that generates the transition rule 

from the driving factors and a CA module that predicts future land use change using the derived transition 

rules. The two modules and the methods used to evaluate the accuracy of the land use change prediction model 

are discussed in this section. 

3.1 Decision tree: J48 

DT is a data mining tool initially used as a classification method (Moore et al., 1991; Speybroeck et al., 2004, 

Wu et al., 2007). A DT structure entails a series of yes/no questions in which the sequence of the questions that 

are asked depends on the answers given in the previous question. When applied to land use/cover classification, 

55



Proceedings of the International Academy of Ecology and Environmental Sciences, 2012, 2(2):53-69 

 IAEES                                                                                                                                                                        www.iaees.org

the specific questions assume values equivalent to land attributes, the sequence of which eventually determines 

the appropriate land use/cover classification (Aalders and Aitkenhead, 2006). This model uses the DT 

algorithm J48 developed by the Machine Learning Group of the University of Waikato, New Zealand. When 

applied to a training sample dataset that is comprised of a list of instances with a set of attributes, the J48 

algorithm operates by recursively splitting the instances in the training sample dataset based on their attribute 

values to produce a tree that preferably generates just one branch. The first attribute to be chosen is designated 

as the root of the tree. The instances in the training sample dataset are split among branches based on their 

attribute values. If an attribute value is continuous, each branch takes a certain range of that value. A new 

attribute feature (node) is then chosen and the process is repeated for the remaining instances. The process 

stops at a terminal note when the classification of a branch is pure (i.e., it contains only instances in a certain 

class). As to what attribute to use for a given split, the choice is based on the attribute having the largest value 

for information gain (Quinlan, 1996; Goodman and Smyth, 1988). The final decision tree generated by J48 

contains various paths from the root to the terminal node. Each path can be translated into a transition rule for 

its subsequent use in CA. 

 

 

 

 

 

Fig. 1 An overview of Hunterdon County, New Jersey, USA 

 

56



Proceedings of the International Academy of Ecology and Environmental Sciences, 2012, 2(2):53-69 

 IAEES                                                                                                                                                                        www.iaees.org

Creating transition rules through DT is superior than using statistical regressions especially when (1) there 

is a large number of variables to predict land use changes (Pal and Mather, 2003; Speybroeck et al., 2004); (2) 

there is the existence of non-linear relationships between variables in the data (Razi and Athappilly, 2005); and 

(3) the underlying relationship between dependent and independent variables is not known (Pal and Mather, 

2003). Although artificial neural network approach has the similar advantages over statistical regression 

methods, it is not intuitive to policy makers and land use planners because of its black box nature. DT is a 

white box model and can be easily interpreted (Breiman et al., 1984; Quinlan, 1996; Li and Yeh, 2004).   

3.2 Cellular automata: Recursive Porous Agent Simulation Toolkit (RePAST) 

In a subsequent step, the transition rules derived using J48 is used by a CA module to evaluate how land 

parcels are converted from their current land uses to their future land uses. Agent Analyst/RePAST (North et 

al., 2005) is chosen to implement the CA process. Through Agent Analyst, users can create, edit, and run 

RePAST model within the ArcGIS environment (Groff, 2007). This graphical user interface allows the 

modeler to create agents, schedule simulations, visualize the ArcGIS layers, and specify the behavior and 

interactions of the agents. Aside from having the power and flexibility of ArcGIS, Agent Analyst/RePAST has 

two outstanding features relevant to this study. First, the model has provisions to allow the modification of 

agent properties, agent behavioral equations, and model properties during run time. Second, it has libraries for 

genetic algorithms and neural networks, including the ability to handle irregular grids and vector data as a 

model component. 

The transition rules embedded in the CA model can also be modified to include government regulatory 

policies on land use changes. Such policies may include regulations or limitations on the conversion of 

agricultural land to developed land, the steering of urban development to where the soils are considered low 

value for agriculture, or the designation of zoning laws. Those policies can be specified as additional transition 

rules to be included in CA model. For examples, the preservation of farmland and open space was represented 

by specifying transition rules that designates these areas as non-developable.  

3.3 Accuracy assessment 

The assessment of land use change prediction accuracy relies on the use of a confusion matrix, which is simply 

a cross tabulation of the predicted land use types against the same land use types in reference. Suppose there 

are M types of land uses. Let the information in a row corresponds to the land use type i in reference and in a 

column shows the predicted land use type j by the land use change model. The element in the confusion matrix, 

ijn , where i, j = 1, …, M, represents the number of instances in reference land use type i that are predicted to 

land use type j. The diagonal elements of the matrix where i = j, iin  or jjn , represent correct predictions. The 

overall accuracy is calculated as the sum of the diagonal elements divided by the total instances number of, i.e. 

N
n

M

i ii1 , where  N =   

M

i

M

j ijn
1 1

.  

Although overall accuracy is useful, it does not give much information about the accuracy of the individual 

land use types, which are usually evaluated by user’s accuracy, producer’s accuracy, errors of commission, and 

errors of omission (Story and Congalton, 1986). The user’s accuracy and the error of commission is a pair of 

complementary measures that indicate how well instances from a predicted land use type represents that land 

use type in reference. Let  
M

i ijj nN
1

 be the total number of instances in predicted land use type j. The 
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user’s accuracy is estimated as 
j

jj

N
n


 for j = 1, …, M. The error of commission is simply equal to (100 

percent – the user’s accuracy).  The producer’s accuracy and the error of omission, on the other hand, express 

how well a reference land use type has been predicted correctly.  Let   
M

j iji nN
1

 be the total number of 

instances in land use type i in reference. The producer’s accuracy is 
i

ii
N

n
 for i = 1, …, M., The error of 

omission is equal to (100 percent – the producer’s accuracy). 

The overall prediction accuracy is usually considered as an overestimation since it does not account for 

agreements that would have occurred by chance (Lillesand and Kiefer, 2000). Another way to assess 

prediction accuracy is to use the Cohen’s Kappa Index, a measure that will eliminate the agreements made by 

pure chance (Cohen, 1960; Monserud and Leemans, 1992; Pontius and Cheuk, 2006). According to Foody 

(2002), the Cohen’s Kappa Index, K̂ , can be estimated as 


 
 

  




M

j jj

M

j

M

j jjjj

NNN

NNnN

1

2

1 1
, where all variables 

are defined above. This index ranges between 0 and 1 and is interpreted as the proportionate reduction in error 

achieved by the model being evaluated as compared with the error of a completely random prediction model.  

Pontius (2000) argued that Kappa Index also has limitations in assessing prediction accuracy. Specifically, 

the index does not give information about location and quantification errors. Quantification error occurs when 

the number of parcels for a given land use type predicted is different from that land use type in reference.  

Location error occurs when the predicted land use type of a given parcel is different from that in reference. 

Pontius (2000) further derived two variants of Kappa Index, namely, locationK  and quantityK  , that measure the 

accuracy in predicting location and quantity, respectively. The calculation of locationK  and quantityK  involves 

complicated transformation of the confusion matrix and can be found in Pontius (2000). In this application, the 

overall accuracy, error of commission, error of omission, Kappa Index and its two variants are used to evaluate 

the performance of the land use change prediction model. 

 

4 Data Analysis 

Three sets of land use/cover data in 1986, 1995, and 2002 maintained by NJDEP were used to apply the land 

use change prediction model in Hunterdon County. The land use data were compiled from aerial photography 

and Landsat satellite images. The land use/cover is classified into 6 categories as agriculture, barren lands, 

forest, urban, wetlands and water based on a modified Anderson Classification System. The model uses all six 

land use types. A land parcel layer for the county is obtained from the Hunterdon County Office of GIS. 

Besides the land use and land use parcel data, other spatial data such as digital elevation models (DEM), soil, 

streams, major roads and urban centers are also obtained from the NJDEP Bureau of GIS and/or the Hunterdon 

County Office of GIS in digital format.  

4.1 Development of parcel-based land uses  

A parcel-based land use change prediction model requires a single land use type assigned to each land parcel, 

which is in fact a challenging task. For example, a residential parcel in a low density residential development 

area may look like a forest as the house is blended into its natural surroundings. Wu et al (2007) used 

municipal tax assessment database to evaluation land use changes. Local land assessment records for real 

estate tax purposes may contain the information for the intended uses of land parcels, but not necessarily 
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reflect their actual land uses. In this application, the land use type for a parcel was assessed from the land 

use/cover data.  

A parcel may include multiple land user/covers after overlaying the land use/cover layers with the land 

parcel layer. The following classification scheme was developed to assign a single land use to a parcel to 

develop the parcel-based land uses in 1986, 1995, and 2002 in the county. Each parcel is initially tested for any 

agricultural land present.  If the agricultural land is over 45 percent in a parcel, the parcel is classified as 

agricultural lands. This threshold of 45 percent is based on the percentage of agricultural land in all parcels in 

2002, which has a mean of 19 percent with a standard deviation of 26 percent.  

For a parcel with less than 45 percent of agricultural land, the urban area in the parcel is compared to a 

threshold value of 0.5 hectares. The threshold value represents a typical house footprint in the region including 

the area occupied by house, driveway, patio, pool, and etc (NJWSA, 2003). If the parcel with the urban area 

greater than 0.5 hectares is located in a residential, commercial or industrial zone and the parcel size is less 

than 4 hectares (10 acres), the parcel is classified as urban. If the urban area is less than 0.5 hectares, but 

represents more than 45 percent of the parcel, the parcel is also classified as urban. For a parcel that failed to 

be classified as agriculture and urban, its final designation will be determined by the dominant land uses in the 

parcel. 

It would be ideal to have the re-classified land use distribution re-assembly the original land use 

distribution. However, the classification scheme used in this study consistently over-allocates land to 

agriculture parcels by approximately 26 percent in all three years. At the same time, the scheme under-

allocates the land areas to forest, urban use, and wetlands parcels by 13 percent, 21 percent, and 38 percent, 

respectively. Many other schemes had been tried, but this one gave the best accuracy. 

4.2 Definition of the neighborhood 

The usual neighborhood configurations used in CA models include the von Neumann or the Moore patterns 

that assume a lattice composed of regularly shaped cells or grids. Since irregular shaped land parcels are used 

as a unit of analysis in this study, an alternative neighborhood configuration has to be defined accordingly. In 

their parcel-based CA model, Stevens et al. (2007) evaluated three neighborhood configurations: (A) an 

adjacency neighborhood that includes all parcels having a common edge with the central parcel; (B) a distance 

neighborhood that includes parcels that fall completely or partially within a certain distance of buffer from the 

edge of the central parcel; and (C) a clipped distance neighborhood that includes all parcels that fall 

completely and portions of the parcels that are partially within a certain distance of buffer from the edge of the 

central parcel.  

The neighborhood of a parcel in this study is defined by an external buffer with a thickness of 145 meters 

(m) around the edge of a parcel shown in Fig. 2. It is very similar to the neighborhood configuration (C) 

discussed, but it is different from the configuration (C) by excluding the central parcel itself. Assuming that all 

the parcels are squares in Hunterdon County, the side length of an average square-shaped parcel is estimated to 

be 145 m. The original land use GIS layers were overlaid with the buffer to identify the percentages of 

different land use types within the buffer, which are used as driving factors in the land use change prediction 

model to determine the future land use of the parcel.  

4.3 Derivation of driving factors 

Allen and Lu (2003) suggested three criteria in selecting an appropriate set of driving factors for modeling land 

use change. First, the factors should include all physical, economic, demographic and social factors that affect 

all types of land use change. Second, they must have spatial attributes. Third, they must reflect the properties 

and characteristics of the parcel. Jiao and Boerboom (2003) grouped various driving forces into five categories 

namely: neighborhood, accessibility, suitability, policy, and socio-economic factors. Following those 
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principles and examples, this study considers the following driving factors: land use type of a parcel, 

distribution of land uses in a parcel’s neighborhood in terms of percentages, parcel size, amount of wetlands 

within a parcel, distances from the center of a parcel to its nearest streams, major roads, and urban centers, 

average slope, and number of soil restrictions for urban development. Table 1 presents various driving factors 

in selected publications and also in this study. 

 

 

 

Fig. 2 A hypothetical configuration of the neighborhood used in Cellular Automata modeling 

 

 

Table 1 The list of driving factors in land use changes  

Authors Driving Factors Used 

Stevens et al. (2007) Distance to parks; distance to commercial areas; distance to light industrial land; distance 
to heavy industrial land; adjacency to existing developed and undeveloped land 

Li and Yeh (2004) 
  

Urban conversion; distance to city proper; distance to town centers; distance to roads; 
distance to expressways; distance to railways; number of developed cells in the 
neighborhood; current land use agricultural suitability; slope 

Allen & Lu (2001) Distance to tourist attraction features; distance to roads; distance to sewer line; distance 
to central business district; distance to nearest neighborhood; elevation; slope; parcel 
size; parcel ownership; drainage; policy constraints: protected land, residential zone, 
commercial zone, subdivision, and urban boundary; population density; housing unit 
density; housing unit value; initial land use 

Waddell (2000) Current development in neighbor; policy constraint: zoning regulations; land and 
improvement values; distance to highways; distance to existing development; regional 
accessibility to population 

Moreno and Marceau 
(2006) 

Area of parcel; distance to adjacent polygon; transformation probability to neighbor land 
use type based on area 

This Study Land use type of a parcel, distribution of land uses in a parcel’s neighborhood in 
terms of percentages, parcel size, amount of wetlands within a parcel, distances 
from the center of a parcel to its nearest streams, major roads, and urban centers, 
average slope, and number of soil restrictions for urban development. 
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The identification of the land use type for a parcel and the land use distribution in its neighborhood was 

discussed above. The parcel size was calculated from the land parcel layer. The amount of wetlands within a 

parcel was calculated by overlaying the wetlands layer extracted from the land use/cover data with the land 

parcel layer. A point layer for the centers of parcels was created by extracting the geometric centers of the 

polygons from the land parcel layer. The distances from the center of a parcel to its nearest streams, roads, and 

urban centers were calculated by conducting NEAR analyses in ArcGIS between the point layer and the 

respective line layers. The stream layer used is the 2002 stream, the newest stream data maintained by NJDEP.  

The major roads include all county roads and interstate highways. Population density from the Census data 

was used to identify the location of urban centers. The census tract having the highest population density in 

each municipality was then the designated location of its urban center. The slope was calculated from the 10-

meter DEM maintained by NJDEP. The average slope for each parcel was calculated using the Spatial Analyst 

in ArcGIS by overlaying the slope raster with the parcel layer.  

Soil suitability for development is an important factor that drives urban development. NJWSA (2002) 

evaluated all soils in the Raritan River Basin including Hunterdon County in term of their suitability for the six 

of 24 community development applications as defined by United State Department of Agriculture – Natural 

Resources Conservation Service (NRCS) soil survey. The six pertinent elements of development include septic 

tank absorption fields; foundation for dwellings with basement; foundation for dwellings without basement; 

foundation for small commercial buildings; local streets and roads; and lawns, landscaping, and golf fairways. 

The Soil Survey Geographic data was obtained from the NRCS. The dominant soil type in each parcel was 

identified by overlaying soil data layer over the parcel layer. The number of restrictions to these six 

development application in each parcel were identified based on the soil suitability assessment by NJWSA 

(2002). 

 

5 Results 

When applying the land use change prediction model, the transition rules were derived using 1986 and 1995 

re-classified parcel-based land uses in Hunterdon County, New Jersey and the discussed driving factors in the 

DT module. The derived transition rules were then used in the CA module to predict future land use pattern 

using the parcel-based land uses in 1995. Since the transition rules were based on cumulative land use changes 

in a 9-year period from 1986 to 1996, the future land use changes predicted by the model should reflect the 

land use pattern in 2004, the 9th year from 1995. Since no land use data for 2004 was available, the land use 

data in 2002 was used as a reference to evaluate he model performance using an array of accuracy 

measurements discussed previously.   

5.1 Transition rules derived from land use changes from 1986 to 1995  

A complicated DT structure was generated using J48 and was then converted to the transition rules in the 

subsequent CA modeling. It is difficult to report all the transition rules, but some significant rules are noticed 

below. The first split in the decision tree is current land use type. Although most urban parcels remain in urban 

uses, they could be converted to other uses such as agriculture and forest. This occurs when the parcels are 

large, have a big portion of wetlands within them, three and more soil restrictions to urban development, lower 

percentage of urban and barren land, and higher percentage of water, agricultural, forest, wetlands in the 

neighborhood, and are farther away from highways and urban centers with steeper slope. 

Agricultural parcels could be converted into urban, forest, barren and wetlands depending primarily on 

their neighborhood land use distribution and parcel size. Agricultural parcels tend to be converted into urban 

uses when there is high percentage of urban land in their neighborhood and the parcel size is small. The 

conversion from agriculture to forest could occur to those parcels with steep slopes where there are severely 
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restricted soils for development and a high percentage of forest in their neighborhoods. Agricultural parcels 

with a significant amount of barren land in their neighborhood have the potential of becoming barren land. The 

conversion to wetlands usually occurs to the large agricultural parcels that have significant amount of wetlands 

in it. 

Forest parcels with a high percentage of urban land and a low percentage of barren land in their 

neighborhood are usually converted to urban use. This type of conversion tends to occur in the case of small 

forest parcels. Forest parcels could be converted to agriculture or wetlands when there is a significant presence 

of agricultural land already in their neighborhood or wetlands within these parcels, respectively.  

The actual amount of wetlands within a wetland parcel usually determines its future status. The wetland 

parcels with a large amount of wetlands within it always remain as wetlands. However, wetland parcels with 

smaller amounts of wetlands have higher likelihood of converting into urban in a high urban neighborhood or 

become barren lands if the parcel has three or more restrictions to urban development. Barren parcels can be 

developed into urban lands or remain as barren. Finally, the land parcels classified as water, or artificial and 

natural lakes usually stay as water. 

The accuracy of the transition rules were evaluated by testing the derived transition rules against a testing 

dataset which is about two-thirds of the randomly selected land parcels in the county. To do this, all the 

attributes except the land use class in 1995 of an instance in the dataset were fed into the decision tree that 

consists of all the transition rules to predict the land use class in 1995. Such process was repeated for all 

instances in the dataset. The accuracy is computed by dividing the total number of instances with the correct 

predictions by the total number of instances in the dataset. The accuracy of these transition rules for predicting 

the land uses in 1995 from the land use in 1986 was 81.4 percent when using a training sample dataset. 

 

 
Table 2 The predicted land use distribution based on the land uses in 1995 in Hunterdon County, New Jersey, USA  

Predicted Land Use Land Use in 
1995 Agriculture Barren Forest Urban Water Wetlands Total

Agriculture 44,130 
(4,463) 

28
(24)

2,440
(1,434)

 46,598
(5,921)

Barren  249
(318)

64
(80)

 313
(398)

Forest  25,367
(6,872)

10,018
(3,306)

 35,384
(10,178)

Urban  8
(38)

1
(1)

17,870
(33,827)

 17,878
(33,866)

Water  2,722
(142)

 2,722
(142)

Wetlands  115
(35)

2,078
(739)

4,332 
(763) 

6,525
(1,537)

Total 44,130 
(4,463) 

257
(356)

25,511
(6,932)

32,470
(39,386)

2,722
(142)

4,332 
(763) 

109,420
(52,042)

The numbers in parentheses indicates of number of parcels.  

 

 

5.2 Predicted land use changes using the land use in 1995 

Table 2 presents the predicted land use changes during the next simulation period, i.e. 1995-2004, from 1995. 

The model predicted that the urban areas increase from 17,878 hectares (33,866 parcels) in 1995 to 32,470 

hectares (39,386 parcels) by the end of the simulation period, i.e. 2004, while the area of other land uses 

decrease except water which remains the same. Forest is the biggest contributor to the urban development in 

that period followed by agriculture and wetlands. The total forest loss to urban development is 10,018 hectares 
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(3,306 parcels).  2,440 hectares (1,434 parcels) of agricultural lands are given away to urban development. 

There are 2,078 hectares (739 parcels) of wetlands losses to urban development, which is quite significant 

since this amount represents almost a third of the county’s remaining wetlands in 1995. The forest loss was 

partially offset with the reforestation of 144 hectares from wetlands (35 parcels), agriculture (24 parcels), and 

urban parcels (1 parcel). 

 

 

Table 3 Confusion matrix for evaluating accuracy based on the land uses in 2002 

Predicted Land Uses in Terms of the Number of Parcels 2002  
Land Uses Agriculture Barren Forest Urban Water Wetlands Total 

Parcels
Misclassified Error of 

omission (%)
Agriculture 3,171  98 1,057 12 4,338 1,167 26.90
Barren 97 15 15 52 2 181 166 91.71
Forest 270 9 5,787 3,385 13 32 9,496 3,709 39.06
Urban 912 332 955 34,241 17 68 36,525 2,284 6.25
Water 4  25 40 105 14 188 83 44.15
Wetland 9  52 611 7 635 1,314 679 51.67
Total Parcels 4,463 356 6,932 39,386 142 763 52,042  
Misclassified 1,292 341 1,145 5,145 37 128 8,088 
Error of 
commission, 
% 

 
28.95 

 
95.79 16.52 13.06 26.06 16.78

 

 
Predicted Land Uses in Terms of the Total Area, Hectares 2002  

Land Uses Agriculture Barren Forest Urban Water Wetland Total Area Misclassified Error of 
omission, %

Agriculture 40,264   490 2,829  130 43,714 3,449 7.89
Barren 372 107 131 77  2 689 582 84.47
Forest 1,942 46 23,629 9,651 18 156 35,444 11,814 33.33
Urban 1,400 104 1,069 17,929 10 85 20,597 2,669 12.96
Water 25   33 34 2,691 38 2,820 130 4.61
Wetland 127   159 1,948 4 3,919 6,156 2,238 36.35
Total Area  44,130 257 25,511 32,468 2,722 4,332 109,420    
Misclassified 3,865 150 1,881 14,540 32 413  20,881 
Error of 
commission, 
% 8.76 58.52 7.37 44.78 1.16 9.54  

 

 

5.3 Model evaluation using the land use in 2002 

Table 3 presents the confusion matrix in terms of the number of parcels (the upper panel) and of the area (the 

lower panel) using the predicted land use distribution and the actual land uses in 2002.  As shown in the upper 

panel of the table, the overall prediction accuracy in terms of the number of parcels, computed as the sum of 

the agreements in the diagonals (43,954 parcels) divided by the total number of parcels (52,042 parcels), is 

84.46 percent.  Similarly, the overall prediction accuracy is 80.92 percent (88,539 ha divided by 109,420 ha) in 

terms of the total acreage as shown in the lower panel of Table 3. These measurements are comparable to the 

values reported in the literature. Li and Yeh (2004) reported an overall accuracy of 82 percent using a DT-

based CA for predicting land use change in an urbanizing city in Southern China. Allen and Lu (2003) 

developed a multinomial logistic land use change model with the parcel as the unit of analysis and achieved an 

overall accuracy of 80.76 percent in terms of number of parcels.  

Table 3 also shows the error of omission and the error of commission. Omission error varies across land 

use categories. There are large error of omission for barren, wetlands and water, but they account for a very 
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small portion of the county.  On the other hand, the urban and agriculture, two major land use categories have 

low error of omission. Similar observations are also found for the error of commission.  Table 3 also shows 

that agricultural and urban lands are consistently underpredicted while water and wetlands are overpredicted in 

terms of both the total numbers of parcels and acreage. 

The agreement between the predicted land use distribution and the actual land uses in 2002 was also 

evaluated by Cohen’s Kappa Index and its two variants to eliminate the agreements by pure chance. The 

calculated Kappa Index is 0.644, which indicates that the two patterns are in a moderate agreement based on 

Congalton (2001) and Landis and Koch (1977).  

Two variants of the standard Kappa Index were also calculated to evaluate the agreement between the 

predicted land use distribution and the actual land uses in 2002: locationK  and quantityK  following Pontius 

(2000).  locationK  is equal to 0.748, which indicates the model has good capacity to specify location correctly.    

quantityK  is equal to 0.925, which indicates the model has excellent capacity to specify quantity correctly.  

These numbers suggested that the model has better capacity to predict the quantitative changes than the 

locational changes in Hunterdon County.  

5.4 Sensitivity of neighborhood size   

A change in the neighborhood size directly affects the values of the driving factors.  The results presented 

above are based on the neighborhood size of 145 m further from the boundary of a parcel. The sensitivity 

analysis evaluates whether the different neighborhood sizes improve the modeling accuracy. Two 

neighborhood scenarios considered are 72 m and 217 m away from the boundary of a parcel. Table 4 presents 

the contingency table and Kappa indices when comparing the predicted land use pattern to the 2002 reference 

land use pattern for each scenario. 

There are slight differences in the predicted future land use changes using the two neighborhood sizes. 

Take the three land use classes with large areas – agriculture, forest, and urban as examples. The model using 

the 72-m neighborhood predicts 3,217 agricultural parcels in 2004 while the model using the 217-m 

neighborhood 3,142 agricultural parcels. The difference is about 75 parcels, which is equivalent to 2.3 percent 

of total agricultural parcels. Predictions for forest and urban lands differed by 24 (0.41 percent) and 313 (0.92 

percent) parcels, respectively. 

The overall accuracy is 84 percent and the Kappa index is 0.64 when comparing the predicted land use 

pattern using the 72-m neighborhood to the land use pattern in 2002.  The overall accuracy is 85 percent and 

the Kappa index is 0.65 when using the 217-m neighborhood. The relatively small discrepancy in the two 

values of the Kappa index confirms previous observations indicating that there is no marked difference in 

model outcomes between the two neighborhood sizes in the application. These accuracy measurements are 

very similar to the measurements using the 145-m neighborhood as discussed above (i.e. the 84.46 percent of 

overall accuracy and the Kappa Index of 0.644.  

 

6 Summary and Conclusions 

This study develops a DT-based CA model to predict future land use changes with parcel-level data. The 

model was evaluated using the historical land use changes in Hunterdon County, New Jersey.  The model 

defines the modeling space as a collection of geographic objects of irregular shape that are spatially 

represented by land parcels and defining the transition rules using a knowledge discovery algorithm DT. The 

neighborhood of each parcel was defined as an external buffer along the boundary of the parcel. A DT elicits 

land use patterns from a large set of driving factors and is free from the subjectivity biases often encountered 

in expert knowledge based methods. The DT approach also offers the convenience of incorporating the land 
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use policies such as down-zoning, open space and farmland preservation when predicting the future land use 

changes. 

 

 

Table 4 The Impacts of Two Different Sizes of Neighborhoods on the Overall Accuracy and the Resulting Kappa Index  

The Number of the Simulated Parcels with 
The Neighborhood Buffer Width of 72 m 

 
The Number of Parcels in 
2002 Agriculture Barren Forest Urban Water Wetlands Total

Agriculture 3,217 104 1,006 11 4,338

Barren 97 15 17 50 2 181

Forest 297 9 5,785 3,359 13 33 9,496

Urban 1,013 376 982 34,077 17 60 36,525

Water 4 25 39 105 15 188

Wetlands 9 44 644 7 610 1,314

Total 4,637 400 6,957 39,175 142 731 52,042

Overall Accuracy 84.18

Kappa Index 0.64

The Number of the Simulated Parcels with 
The Neighborhood Buffer Width of 217 m 

  
The Number of Parcels in 
2002 Agriculture Barren Forest Urban Water Wetlands Total

Agriculture 3,142 91 1,094 11 4,338

Barren 88 13 15 63 2 181

Forest 256 8 5,809 3,376 13 34 9,496

Urban 804 297 944 34,390 17 73 36,525

Water 3 28 38 105 14 188

Wetlands 10 47 590 7 660 1,314

Total 4,303 318 6,934 39,551 142 794 52,042

Overall Accuracy 84.78

Kappa Index 0.65

 

  

The coupled DT-based CA model reasonably predicts the land use changes in the Hunterdon County, New 

Jersey, where substantial land use changes have taken place during the last three decades. Using the historical 

land use changes during the period 1995-2002 as a reference, the model achieves an overall accuracy of 80.92 

in terms of the total areas and of 84.46 percent in terms of the total number of land parcels. The Kappa Index, 

the conventional statistics for comparing similarity of two spatial patterns, is measured at 0.644.  Two variants 

of the Kappa Index are also calculated to evaluate the model’s ability to correctly predict location and quantity 

and are 0.748 and 0.925, respectively. Such results indicate the model has the higher capacity of predicting the 

quantitative changes than the locational changes in land uses in the study area.  This study defines the 

neighborhood of a parcel by a 145-m buffer from the boundary of the parcel. The sensitivity analyses using the 

72-m and 217-m buffers shows the definition of the neighborhood has no significant impacts on the model’s 

prediction accuracy in this study area. Caution should be given when generalizing this result to other studies 

and areas. Some studies showed that the CA model was sensitive to changes in model elements such as the 

neighborhood configuration (Chen and Mynett, 2003).  

The application of the coupled model in Hunterdon County, New Jersey demonstrates the feasibility and 

effectiveness of using parcel-level data in land use change modeling. However, there are still challenges that 

65



Proceedings of the International Academy of Ecology and Environmental Sciences, 2012, 2(2):53-69 

 IAEES                                                                                                                                                                        www.iaees.org

need to be addressed in the future land use change modeling using the parcel-level data. First, the model 

assumes a single land use for each parcel. It is a challenging task to assign a single land use to a parcel based 

on a land use map compiled from satellite images and/or aerial photography especially when the study area is 

too large for detailed field verification. As discussed previously some land use classes were overestimated, 

while others were underestimated. The accuracy of assigning the correct land uses would have significant 

impacts on the overall accuracy of the modeling. Although the transition rules on the derived parcel-based land 

uses achieves reasonable prediction accuracy, the overall accuracy could be further improved by improving the 

accuracy of assigning a single land use to a parcel based on the current land use data derived from aerial and 

remote sensing imagery. Second, the model assumes the parcel boundary stays the same during the modeling 

process, which is ideal. A parcel itself may evolve over time. For example a large agricultural or forest parcel 

could be divided into several smaller parcels in urban development. Potential improvement could be made by 

recent developments in using the dynamic vector agent in CA-based models (Ménard and Marceau, 2005; 

Hammam et al., 2007; and Moreno et al., 2009). 

It should be recognized that assessing the accuracy of the land use change model is a fast evolving science. 

As argued by White (2006), the cell-to-cell comparison methods as discussed above for assessing the accuracy 

of the simulation results are useful, but limited since most land use change models especially CA-based 

models emphasize similarity in spatial patterns rather than attribute matching at a specific location. Future 

research may consider using more advanced pattern-based map comparison techniques. 
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