
Proceedings of the International Academy of Ecology and Environmental Sciences, 2012, 2(4):246-250 

  IAEES                                                                                                                                                                        www.iaees.org

Article  

 

Betterments to biodiversity optimal sampling 

 
Alessandro Ferrarini 

Department of Evolutionary and Functional Biology, University of Parma, Via G. Saragat 4, I-43100 Parma, Italy 

E-mail: sgtpm@libero.it,alessandro.ferrarini@unipr.it 

 

Received 8 August 2012; Accepted 11 September 2012; Published online 1 December 2012 

IAEES 

 

Abstract 

Biodiversity sampling is pivotal in ecology and biology. It is a complex trade-off between the need to sample 

ecological info, and the need to do it at low effort.  In this paper, I propose an improved new solution to this 

challenge, which takes into account numerous aspects of biodiversity survey activities. There are two 

outcomes of the proposed algorithm: a) the optimal number of sampling points, and b) their coordinates in the 

study area. Resulting sampling points can be used for a survey exactly at that points, or as the centroids of 

linear and plot (areal) samplings. The proposed solution to biodiversity sampling exactly reverses the common 

use of ecological and biological sampling: first, one should detect the optimal strategy for his case study, then 

the kind (random, systematic, stratified) of sampling strategy can be a posteriori assessed through proper geo-

statistical tests applied to the resulting optimal sampling. In other words, I suggest in this paper that the 

sampling strategy should be the result of an optimization procedure, not an a priori choice. The computational 

effort for the proposed sampling model is not trivial, nonetheless an optimized sampling strategy is a 

requirement for successive and successful steps of biodiversity sampling, analysis and preservation.  
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1 Introduction 

In field surveys, ecologists and biologists make observations at different spatial locations. In the absence of 

prior knowledge or in case of outdated info about the species that they intend to sample, they usually rely on 3 

kinds of sampling design (random, systematic and stratified; Cochran, 1977; Pielou 1969; Särndal et al., 1992;  

Scheaffer et al., 1996).  

In a simple random sample, each point has the same probability of selection. However, simple random 

sampling is prone to sampling error because the randomness of the selection may not reflect the spatial pattern 

of species under study.  Systematic and stratified techniques try to subdue this problem. Systematic sampling 

relies on selecting elements at regular intervals along the study area. However, if some kind of spatial 

periodicity is present with a period that is a multiple or factor of the employed interval, systematic sampling is 

likely to be unrepresentative of the overall spatial pattern. When species under study belong to a number of 

distinct categories, the survey can be organized into separate (stratified) layers. Each layer is then sampled 

independently, out of which samples can be randomly selected. There are, however, at least two potential 

drawbacks for stratified sampling. First, it requires the selection of relevant stratification variables, which can 

be challenging. Second, it’s not useful when there are no distinct categories. 
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Since the results achieved by the previous approaches are often disappointing, in a previous work (Ferrarini, 

2012a) I proposed a new solution to biodiversity optimal surveys by coupling information theory (Shannon 

and Weaver, 1962) and genetic algorithms (Holland, 1975). This algorithmic solution performed very well in 

two studies of biodiversity survey and conservation of plant and animal species in 101 sites of importance for 

conservation in the Emilia-Romagna Region (Italy; Ferrarini, 2011; Ferrarini, 2012b). However, during these 

two studies, I noticed that further improvements to my sampling algorithm were possible. Hence, in this paper 

I provide major betterments which take into account further aspects of biodiversity sampling activities. 

 

2 The Rationale Behind the Proposed Sampling Algorithm 

Conceptually, we can measure the success of biodiversity sampling (Sbs) in the form of a benefit-cost function: 

effort Sampling

info ecological Sampled
bsS     (1) 

It’s clear that we want to maximize this ratio, hence we are looking for: 

max(Sbs)       (2) 

The sampling effort (denominator of Sbs) can be measured as a function of the number of sampling points and 

their average geographical distance, as follows: 

Sampling effort = s * Ds     (3) 

where s is the number of sampling points and Ds the average distance among sampling points.  

With regard to ecological information (e.g., plant and animal species), we start from a situation where we 

want to sample as much species as possible, but we have just a vague or outdated idea of their spatial 

arrangement. To this reason, we can make use of common proxies of biodiversity (topographic, land cover and 

land use variables) which behave as the driving forces of species’ spatial arrangement. The wider the range of 

proxies (e.g. elevation, acclivity, slope aspects, land cover types, soil types, geomorphological types etc.) at 

sampling points, the higher the chance to sample a wider spectrum of biodiversity (plant and animal species). 

Shannon’s evenness index, calculated for each proxy and then summed up for n proxies, is  proficient to the 

goal of measuring the wideness of sampled biodiversity proxies. 

In order to put equation (1) into an operative form, let n be the number of selected proxies of biodiversity, 

and k the number of intervals chosen for the n variables (Shannon’s evenness index requires that variables are 

split into intervals). Hence, the success of biodiversity sampling Sbs can be maximized in the form: 
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where pij is the proportion of sampling points that falls in the j-th interval of the i-th variable, Smax (maximum 

number of sampling points) is a parameter chosen at the beginning of the sampling algorithm, and Dsmax is the 

maximum possible distance within the study area (diameter of the study area). There are 2 parameters (n and k 

that must be chosen at the beginning of the sampling algorithm) and 2 variables (s and the “hidden” variable 

X-Y coordinates of such s points). Instead, Ds is just a function of the s points and their correspondent 

coordinates. Both numerator and denominator range in the same [0÷n] interval. This is pivotal, otherwise the 
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optimization phase could be biased towards just numerator maximization or denominator minimization, 

instead of a more general maximimization of Sbs.   

Last, genetic algorithms (GAs; Goldberg, 1989) can be used in order to solve (4) as a function of s and X-

Y coordinates of such s points (Parolo et al., 2009). GAs consist of optimization procedures based on 

principles inspired by natural selection. GAs involve “chromosomal” representations of proposed problem 

solutions which undergo genetic operations such as selection, crossover and mutation. GAs can proceed by 

generating X-Y coordinates on the surface of the study area and, each time, by recalculating Sbs at the search of 

the highest possible value in the study area.  

 

3 The Improved Solution 

First, in equation (4) the denominator could theoretically go close to 0, for instance when  Dsmax  is very high. 

We can fix this problem by adding 1 to both denominator and numerator. Hence, they both range in the same 

[1 ÷ (n+1)] interval. 

Second, it should be possible to give different weigths to numerator and denominator (α and β respectively). 

In case of few resources in terms of time and money for sampling activities, we could use β>α in the sampling 

equation (4). The opposite in case the focus is on the ecological aspect of sampling. It’s clear that the case α = 

β  resembles equation (4). 

Third, the number of intervals could be different for each variable. Hence k for the i-th variable could be 

better expressed as ki. 

Fourth, in order to avoid spatial autocorrelation (Cliff & Ord, 1973), a minimum distance Dmin among 

sampling points should be set. In spatial analyses, the simple count of sample units is not an adequate 

estimator of effective sample size (Parolo et al., 2008). The amount of pseudoreplication of a variable depends 

on the distance between sample points (i.e. a set of closely spaced observations effectively provides less 

information than the same number of observations more widely separated in space). Such spatial dependency 

is termed spatial autocorrelation and it is often overlooked (Segurado et al., 2006). The choice of Dmin must 

take into account several aspects. For instance, the maximum number of sampling points (Smax) in the study 

area would become as follows: 

 

max 2
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because we have to consider a circle of radius equal to Dmin (where no further sampling points are possible) 

around each sampling point. 

In conclusion, the previous betterments modify equation (4) as follows: 
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that must be maximized using GAs under the constraint that 

minABD D         (7) 
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and 

S ≤ Smax       (8) 

where DAB is the geographical distance between two generic sampling points A and B. 

Resulting sampling points can be used for a sampling exactly at that points, or as the centroids of linear or plot 

(areal) samplings.  

 

4 Further Possible Improvements 

I conceive that further, minor improvements are possible to the algorithmic solution of equations (6), (7) and 

(8). With regard to the measurement of sampling effort, a more complex definition could also take into account 

the distance of sampling points from roads (the more the distance, the more the sampling effort), or the 

steepness of mountain areas that results very difficult to sample. 

With regard to weigths, a deterministic choice at the beginning of the sampling algortihm could decide 

whether α must be greater β or vice versa. Successively, a stochastic simulation could generate several values 

for both α and β, and correspondent optimizations of equation (6) via GAs could be verified in order to decide 

the most appropriate values for α and β. 

With regard to the constraints for equation (6), several restraints can be added. For instance, if we are just 

looking for hygrophytic plant species, a maximum distance for sampling points from rivers and streams could 

be set. In addition, areas with excessive steepness or altitude a.s.l. could be a priori excluded for logistic 

reasons. 

 

5 Conclusions 

Biodiversity sampling is pivotal in ecology and biology. It is a complex trade-off between the need to sample 

ecological info, and the need to do it at low effort.  

In this paper, I proposed an improved solution to this challenge, which take into account numerous aspects 

of biodiversity sampling activities. The proposed solution to biodiversity sampling exactly reverses the 

common use of ecological and biological sampling: first, one should detect the optimal strategy for his case 

study, then the kind (random, systematic, stratified) of sampling strategy can be a posteriori assessed through 

proper geo-statistical tests applied to the resulting optimal sampling. In other words, I have suggested in this 

paper that the sampling strategy should be the result of an optimization procedure, not an a priori choice. 

There are two outcomes of my algorithm: a) the number of sampling points, and b) their coordinates in the 

study area. Resulting sampling points can be used for a survey exactly at that points, or as the centroids of 

linear and plot (areal) samplings. 

The computational effort for this sampling algorithm is not trivial, by the way the sampling strategy is a 

requirement for successive and successful steps of biodiversity sampling, analysis and preservation.  
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