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Abstract 

Stochastic model of migrations of individuals within the limits of finite domain on a plane is considered. It is 

assumed that population size scale is homogeneous, and there doesn’t exist an interval of optimal values of 

population size (Alley effect doesn’t realize for population). For every fixed value of population size number 

of interactions between individuals is calculated (as average in space and time). Correspondence between 

several classic models and numbers of interactions between individuals is analyzed. 
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1 Introduction 

 

 

 

1 Introduction 

Verhulst model (Verhulst, 1838) is one of the basic models in ecological modeling: 

2xx
dt

dx   .                                                             (1) 

In (1) )(tx  is population size (or population density) at time t ;  parameter   is equal to difference between 

intensity of birth rate and intensity of death rate; parameter  , 0 const , is coefficient of influence of 

self-regulative mechanisms on population dynamics; parameter  /K  (when 0 , and population 

doesn’t eliminate for all initial values of population size) is maximum of population size which can be 

achieved asymptotically. This is standard explanation of biological sense of model (1) parameters.  

In (1) it is assumed that increasing of influence of self-regulative mechanisms on population size 

changing (and, respectively, increasing of death rate) is proportional to population size squared (or population 

density squared). This assumption is based on physical idea about paired interactions between physical objects. 

In other words, it is assumed that number of interactions between individuals during rather short time period 
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0t  is equal to tx 2 . Increasing of number of interactions leads, for example, to increase of intra-

population competition for food and space, to increase of speed of a spread of diseases in population and so on. 

Thus, it leads to increase of influence of self-regulative mechanisms on population dynamics. But we have 

some differences between physical and biological objects… Moreover, it isn’t obvious how we have to 

determine “number of interactions” for individuals even in most primitive cases (when space is homogenous, 

Alley effect doesn’t realize for considering population etc.; Allee, 1931; Odum, 1983).   

Comparison of theoretical results obtained with model (1) with empirical and experimental time series 

showed that in various cases this model doesn’t allow obtaining good fitting for existing datasets (see, for 

example, Gause, 1934; Maynard, 1968, 1974; Pielou, 1977; Isaev et al., 1984, 2001; Brauer and Castillo-

Chavez, 2001; Nedorezov and Utyupin, 2011 and many others). In situations when model (1) allows obtaining 

good fitting it is possible to point out some other models which can give better results (Nedorezov, 2011, 

2012). Attempts in modifying of Verhulst’ model (1) led to appearance of some other models. In particular, 

within the framework of Gompertz’ model (Gompertz, 1825) it was assumed that influence of self-regulative 

mechanisms is proportional to product )ln(xx :  


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x
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dt

dx
ln .                                                             (2) 

In model (2) both parameters are positive. If initial value Kx  00  then Ktx )(  at t . If Kx 0  

then Ktx )( . Note, expression )ln(xx  describes influence of self-regulative mechanisms if and only if 

1x  (Nedorezov, 1997; Nedorezov and Utyupin, 2011). Model (2) can be modified with saving all basic 

properties: 
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In model (2) all parameters are positive, 0,,  constK  . Below model (3) will be called as “theta-

Gompertz model”. Within the framework of model (3) influence of self-regulative mechanisms is described by 

the expression )1(ln xx  , and this expression was used for fitting of datasets.  

In Svirezhev’ model (Svirezhev, 1987) negative influence of self-regulative mechanisms was described 

with expression 3x , and increase of population size was proportional to 2x , 0,  const : 

32 xx
dt

dx   .                                                             (4) 

Within the framework of theta-logistic model (Rosenzweig, 1969; Gilpin, Ayala, 1973) which is modification 

of Verhulst’ model (1), respective expression has the form x , where   is positive parameter, 

1 const . In literature (see overview Nedorezov and Utyupin, 2011) it is possible to find a lot of various 

modifications of pointed out models (1)-(4) but in most cases influence of self-regulative mechanisms is 

described as monotonic increasing function with respect to population size in any power.  

Use of physical ideas for modeling of ecological processes can be very useful. In various situations it 

allows obtaining important results. On the other hand, as it was pointed out above, interaction between 

biological individuals doesn’t look like colliding of absolutely elastic balls. There exists a lot of various types 

of interaction between individuals: it can be a competition for food and space; it can be transmission of 

diseases from one individual to another one etc. Moreover, scale of population size changing may be a non-

homogenous set: for biggest part of analyzed species Allee effect is observed (Allee, 1931; Odum, 1983). 

107



Proceedings of the International Academy of Ecology and Environmental Sciences, 2014, 4(3): 106-113 

  IAEES                                                                                                                                                                        www.iaees.org

Influence of this effect (existence of favorable levels of local population size) leads to changing of distribution 

of individuals in habitat, and respectively to changing of a number of interactions (like average of interactions 

in space) between individuals. Thus, these remarks allow concluding that question about types of functions 

which can be applied for description of influence of self-regulative mechanisms on population dynamics is 

open.  

Problem pointed out above cannot be solved analyzing empirical or experimental datasets: self-regulation 

contains a lot of various biological mechanisms, real population density is unknown amount and out of control 

etc. Limits of favorable zone (Allee effect) are unknown too. Thus, this problem can be solved using 

mathematical model of migrations only. In such a situation all basic population parameters are under the 

control, and computer experiments can be provided with important artificial assumptions. One of such models 

is described and analyzed below.   

 

2 Model  

2.1 Description 

Let N  be a total population size, and constN   during the time of providing of computer experiments. Let 
2
nmZ  be an integer rectangular lattice on the plane 2R : 

}1,1:),{(2 mjnijiZ nm  . 

We’ll assume that local population size is determined in knots ),( ji  of the lattice 2
nmZ  only. Denote it as 

)(txij  for 2),( nmZji   at time moment t . Thus, for all time moments t , ...2,1,0t , the following relation 

is truthful: 

Ntx
n

i

m

j
ij 

 1 1

)( . 

It means that there are no migrations outside the domain 2
nmZ ; birth and death processes are absent too. We’ll 

say that two elements of the lattice ),( 11 ji , 2
22 ),( nmZji   are neighboring knots if and only if the following 

relation is truthful:  

12121  jjii . 

Within the framework of model it will be assumed that migration processes from the knot ),( ji  can be 

observed to neighboring knots only. Within the framework of considering model we’ll assume that every 

individual with equal probabilities can migrate to nearest knots or stay in initial knot. Thus, 2.0p .  

2.2 Initial conditions 

As it was pointed out above, for modeling of migration processes it was assumed that total population size N  

is constant; thus, theoretical population density   was known and equal to nmN / . Initial population 

state was modeled with discrete uniform distribution: every individual with equal probabilities could appear in 

every knot of the lattice 2
nmZ . After determination of initial positions the process of individual’s migrations 

was started. During T  time steps (for providing calculations it was assumed that 20000T ) model was run 

free. It is important moment because we have to have on the lattice the situation which is determined by the 

rules of population migration only, and doesn’t depend on the initial state of population. 

2.3 Number of interactions between individuals 

Let’s assume that at any fixed time moment t  local population size ltxij )( . The basic question is: how can 

we calculate number of interactions between individuals? First of all, it is naturally to assume that there are no 
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interactions between individuals from different knots. The second, if epizootics play most important role in 

self-regulation, we have a good background for assumption that every individual contacts with all other 

individuals in determined knot. Thus, in this case the number of paired interactions is equal to 2/)1( ll . 

Below results of computer experiments for this assumption about number of interactions are called “first 

dataset”. But it isn’t a unique type of grouping of individuals and their paired interactions (Odum, 1983; 

Maynard, 1968, 1974). 

Together with pointed out variant of local interactions of individuals we’ll consider the following 

situation. It will be assumed that in every knot individuals can stay separately (i.e. without contacts with other 

individuals in a knot), or can stay in pair, or form a group of three individuals. Let   and   be stochastic 

variables with geometric distribution with parameter q . Number of pairs assumed to be equal to 

}2/,min{* l  . Number of groups with three individuals was equal to },3/)2{( **   l . Other 

individuals ( ** 32  l ) were assumed to stayed separately. In this case the number of paired interactions 

was determined as ** 3  . Below results of computer experiments for this assumption about number of 

interactions are called “second dataset”. 

 

3 Results of Calculations 

After 20000 free steps of model during 20000 steps number of interactions between individuals was calculated 

as average in space and time (for both variants). For every fixed time moment number of interactions was 

calculated for every knot of lattice, and total sum of interactions was divided on product mn . All 20000 

values of averages were summarized and divided on 20000 respectively. This procedure was repeated a certain 

number of times for various values of population size.  

Population size N  was changed from zero up to 100000 with step 1000. Respectively, population 

density ]10,0[  and was changed with step 0.1. Results of calculations of numbers of interactions between 

individuals are presented on Fig. 1.  

 

Fig. 1 Results of computer experiments: changing of numbers of interaction between individuals in two different cases with 
respect to changing of population density.  

 

 

For fitting of obtained samples (Fig. 1) four different functions pointed out above were used. Deviations 

between theoretical functions and obtained samples were tested on Normality and symmetry of distributions 

(Kolmogorov – Smirnov test, Lilliefors test, Shapiro – Wilk test, Mann – Whitney test, and Wald – Wolfowitz 
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test), and on existence/absence of serial correlation (Draper and Smith, 1986, 1987; Lilliefors, 1967; Shapiro et 

al., 1968; Bolshev and Smirnov, 1983; Hollander and Wolfe, 1973; Bard, 1974). Note, that all computer 

experiments were provided independently; thus, if any curve gives good fitting of obtained datasets no serial 

correlations must be observed.  

 

 

   Table 1 Results of testing on normality for deviations (first dataset). 

Models: Parameters 
minQ * KS1 L2 SW3 

Verhulst 4993.0  18.0  15.0p  01.0p  510p  

Theta-
Gompertz 

636.0  
34.2  

7.06 2.0p  01.0p  00006.0p

Svirezhev 058.0  1420.4 05.0p  01.0p  510p  

Theta-logistic 5.0 , 

0.2  

0.18 15.0p  01.0p  510p  

1KS – Kolmogorov – Smirnov test; 2L – Lilliefors test; 3SW – Shapiro – Wilk test; minQ * is minimal value of minimized 
functional form. 

 

 

For the case when 100 nm , and parameter of geometric distribution q  is equal to 2.0 , results of 

testing on Normality of deviations for four classic models (more precisely, deviations between computer 

results of calculation of number of interactions and functions in classic models which describe the influence of 

self-regulative mechanisms) are presented in Tables 1 and 2. Parameters of functions were determined with 

Least Square Method.  

Results presented in table 1 show that best approximations were obtained with Verhulst and Theta-

logistic models. For both models 999992.02 R . For Svirezhev model 9379.02 R , and for Theta-

Gompertz model 9997.02 R . As we can see in all cases correlation coefficient 2R  is very close to one, 

and it means that we have rather good approximation for first dataset. On the other hand, Lilliefors test and 

Shapiro – Wilk test showed that in all four considering cases with 1% significance level we have to reject 

hypotheses about Normality of residuals. Thus, from the standpoint of traditional imagination about good 

model (Bard, 1974) all functions are not suitable for fitting of first dataset.  

 

 

 Table 2 Results of testing on Normality for deviations (second dataset). 

Models: Parameters 
minQ * KS1 L2 SW3 

Verhulst 0642.0  268.38  05.0p  01.0p  510p  

Theta-
Gompertz 

3947.0 , 
3468.0  

0.1957 15.0p  01.0p  510p  

Svirezhev 0072.0  117.35 05.0p  01.0p  510p  

Theta-logistic 3758.0 , 

1543.1  

0.327 15.0p  01.0p  510p  

1KS – Kolmogorov – Smirnov test; 2L – Lilliefors test; 3SW – Shapiro – Wilk test; minQ * is minimal value of minimized 
functional form. 
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The similar situation is observed for results presented in Table 2: Lilliefors test and Shapiro – Wilk test 

showed that in all four considering cases with 1% significance level we have to reject hypotheses about 

Normality of residuals. The best result was obtained for Theta-Gompertz model with 999258.02 R . For 

Theta-logistic model 99876.02 R . For Svirezhev model this characteristics is rather small: 5548.02 R . 

Like in previous case, from the standpoint of traditional imagination about good model (Bard, 1974) all 

functions are not suitable for fitting of second dataset. 

It is important to note that assumption about Normality of deviations between theoretical curves and 

experimental datasets (in considering situation we have to talk about results of computer experiments) is rather 

strong. Softer assumption is following: distribution density must be symmetric with respect to origin. Results 

of checking of hypotheses about symmetry for both datasets are presented in Tables 3 and 4. 

 

 

Table 3 Results of testing on symmetry for deviations (first dataset). 

Models: KS1 WW2 MW3 
Verhulst 1.0p  9968.0p  3573.0p  

Theta-Gompertz 005.0p  3792.0p  016.0p  

Svirezhev 1.0p  3196.0p  5335.0p  

Theta-logistic 1.0p  5352.0p  5156.0p  
1KS – Kolmogorov – Smirnov test; 2WW – Wald – Wolfowitz test;  
3MW – Mann – Whitney test 

 

 

In creation of conclusions about properties of datasets we’ll follow to the next basic principle: if one of 

using tests gives a negative result we have to reject Null hypothesis, and it doesn’t depend on results obtained 

with other tests. In particular, Kolmogorov – Smirnov test showed that we have to reject hypothesis about 

symmetry of residuals obtained for Theta-Gompertz model with very small significance level (Table 3). In 

other cases we cannot reject Null hypothesis about symmetry even with 10% significance level.  

 

 

  Table 4 Results of testing on symmetry for deviations (second dataset). 

Models: KS1 WW2 MW3 
Verhulst 1.0p  5586.0p  7887.0p  

Theta-Gompertz 001.0p  009.0p  0009.0p  

Svirezhev 1.0p  8422.0p  9423.0p  

Theta-logistic 001.0p  0049.0p  0005.0p  
1KS – Kolmogorov – Smirnov test; 2WW – Wald – Wolfowitz test;  
3MW – Mann – Whitney test 

 

 

Results presented in Table 4 allow concluding that deviations obtained for Theta-Gompertz model and 

Theta-logistic model haven’t symmetric distributions: we have to reject hypotheses about symmetry even with 

1% significance level. It is interesting to note that biggest values of probabilities were obtained for Svirezhev 

model which has biggest value of minimizing functional form (Table 2).  

As it was pointed out above for every value of population size (density  ) computer experiments were 

provided independently (Fig. 1). Additionally, we can consider population density as independent variable, as 
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a sequence of fixed time moments. Independence of computer experiments means that deviations between 

theoretical and experimental results are independent stochastic variables. Thus, we cannot have correlation in 

sequence of residuals if used model gives good fitting of dataset.   

Critical values for Durbin – Watson test for 100 experimental points and one predictor variable are 

following: 65.1Ld  and 69.1Ud  for 5% significance level and 52.1Ld  and 56.1Ud  for 1% 

significance level (Draper and Smith, 1986, 1987). For first dataset we have the following results: for Verhulst 

model 0268.0d ; for Svirezhev model 3901.0d ; for Theta-logistic model 0268.0d . Thus, in all 

cases we have to reject hypothesis about absence of correlation with 1% significance level. For second dataset 

we have the following results: for Verhulst model 0047.0d ; for Svirezhev model 0153.0d . For this 

dataset we have also to reject hypothesis about absence of serial correlation.  

For checking hypothesis about absence/existence of serial correlation we also used serial test (Draper and 

Smith, 1986, 1987). For first dataset we have the following results: for Verhulst model number of positive 

deviations is equal to 49, 491 n , number of negative deviation is equal to 51, 512 n , number of groups is 

equal to 50, 50u , and 0965.0z  (standard normal stochastic variable). Taking into account that 

47.0}1.0{ zP  we can conclude that observed combination of deviations with different signs and their 

groups has very big probability. Thus, in this case we have no reasons for rejecting hypothesis about absence 

of serial correlation. The same results we have for Theta-logistic model. For Svirezhev model 851 n , 

152 n , 2u , 554.9z ; thus, for this model combination of deviations with different signs and their 

groups has very small probability, thus, we have to reject hypothesis about absence of serial correlation.   

For second dataset we have the following results: for Verhulst model number of positive deviations is 

equal to 81, 811 n , number of negative deviation is equal to 19, 192 n , number of groups is equal to 2, 

2u , and 623.9z ; probability that z   less or equal to -9.623 is very small, 002.0}3{ zP . For 

Svirezhev model 851 n , 152 n , 2u , 554.9z . For both models we have to reject hypotheses 

about absence of serial correlations in sequences of residuals. 

 

4 Conclusion  

Computer experiments with stochastic model of migrations of individuals on a plane under conditions that 

population size is constant (no birth and death rates, no migrations out of and in to considering domain, 

homogenous structure of locations) allowed obtain two various datasets of interactions between individuals. 

First dataset was obtained for the case when in every location every individual connected with all other 

individuals. Second dataset was obtained for the situation when in locations individuals could stay separately 

or organize group in two or three individuals.  

A lot of classic models of population dynamics were constructed under the assumption that influence of 

self-regulative mechanisms is determined by numbers of interactions between individuals. Approximation of 

obtained datasets by various functions describing influence of self-regulative mechanisms (in Verhulst, Theta-

Gompertz, Svirezhev, and Theta-logistic models) showed that all functions are not suitable for fitting of 

second dataset. For the first dataset Verhulst model and Theta-logistic model can be used for fitting. More 

precisely, last models have good backgrounds for it; but from the standpoint of traditional imagination about 

good and bad models (Bard, 1974) Verhulst and Theta-logistic equations are not suitable for approximation. 

When requirements for used model are not so strong (in particular, when distribution of residuals must be 

symmetric only, and in sequence of residuals serial correlation cannot be observed) these model can be used 

for fitting. 

Obtained results don’t allow concluding that used models cannot be applied for modeling of population 

dynamics. We obtained the background for conclusion that within the frameworks of considered models 
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influence of intra-population self-regulative mechanisms haven’t strong correlation with numbers of 

interactions between individuals.  
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