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Abstract 

Current publication is devoted to application of ELP-model (egg – larvae – pupae) for analysis of pine looper 

moth (Bupalus piniarius L.) dynamics in Netherlands (Klomp, 1966) and determination of asymptotic stable 

dynamic regimes. Method for estimation of model parameters (without using of any minimizing functional 

forms) when several correlated time series must be taken into account is described. Parameters of ELP-model 

were estimated, and it allowed creating two following hypotheses about pine looper moth dynamics: it may 

correspond to strong 2-cycle or non-rigorous 3-cycle. 
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1 Introduction 

Estimation of ecological model parameters is one of the most important theoretical and practical problems 

(Isaev  et al., 1984, 2001; Kendall et al., 1999, 2005; McCallum, 2000; Wood, 2001). In a case when empirical 

dataset contains values of population size changing in time only one can use simple mathematical models (like 

Moran – Ricker model, discrete logistic model etc.; Moran, 1950; Ricker, 1954; Pielou, 1977; Nedorezov, 

2012) for fitting of considering time series. For these models various types of minimizing functions can be 

used when LSM (Least Square Method) is used for estimation of model parameters. After finding of (global) 

minimum of one or other minimizing function analysis of deviations (between theoretical/model and empirical 

values) allows obtaining a conclusion about suitability or non-suitability of model for approximation of 

datasets (Bard, 1974; Draper and Smith, 1998; McCallum, 2000).   

Situation is changed totally when initial sample contains several correlated time series. For example, 

initial sample of pine looper moth (Bupalus piniarius L.) population dynamics in Netherlands (Klomp, 1966) 

contains three time series of densities of eggs, densities of larvae, and densities of pupae. These datasets were 

collected in one and the same location and for one and the same population. Thus, for correct description of 

population dynamics we have to have a model which contains respective variables (like LPA or ELP models; 
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Dennis et al., 2001; Desharnais et al., 2001; Nedorezov, 2014), and we have to use all these time series 

together for correct model parameter estimations.  

In one-dimensional case there is a problem of finding of best minimizing function which corresponds to 

considering time series - it can be a sum of squared deviations, sum of absolute values of deviations, sum of 

deviations after logarithmic transformation of model and datasets etc. In the case with several time series 

problem of selection of minimizing function becomes stronger (Tonnang et al., 2009a, b): problem of 

combination of several minimizing functions must be added to set of previous problems. 

In current publication method of model parameter estimation without necessity to minimize any function 

is considered (Nedorezov, 2015a; Nedorezova and Nedorezov, 2012). Method was applied for estimation of 

parameters of ELP-model (Eggs – Larvae – Pupae; Nedorezov, 2014). This model was applied for fitting of 

pine looper moth time series (Klomp, 1966). It allowed creating of hypothesis that pine looper dynamics is 

cyclic with rather short period in 2 or 3 years. This publication continues our investigations on analysis of pine 

looper moth dynamics with ELP-model and other mathematical models of population dynamics (Nedorezov, 

2015a, b, c). 

 

2 ELP-Model 

Various species of forest insects have one-year generations, and during winter time individuals stay in pupae 

phase (for example, pine looper moth; Klomp, 1966; Isaev et al., 1984, 2001; Nedorezov, 1986; Kendall et al., 

1999, 2005; Nedorezov and Utyupin, 2011 and others). Let kP  be a number of pupae at year k . Respectively, 

kB  is a number of butterflies, kL  is a number of larvae, and kE  is a number of eggs. Relation between 1kB  

and kP  is determined by the following equation: 

kk PB 11  .                                                                  (1) 

In (1) 1 , 10 1   , is quota of survived pupae during the winter period. Amount of this quota depends on 

weather conditions, but below it will be assumed to be constant. It also depends on food conditions for larvae: 

in model it can be described as dependence on kL : )(11 kL  . Increasing of number of larvae leads to 

decreasing of food conditions for them and, respectively, to decrease of amount of 1 . Asymptotically 1  

goes to zero. Thus, following conditions are truthful for 1 : 

0)(1  , 01 
kdL

d
.                                                   (2) 

The following function was used for fitting of time series by model trajectories: 

3
2

1
1

1 g
kLg

g


 .                                                            (3) 

In (3) all parameters jg  are non-negative constants, and 10 1  g .  

2



Proceedings of the International Academy of Ecology and Environmental Sciences, 2016, 6(1): 1-12 

 
                                                                                                                                                                                                                

 IAEES                                                                                                                                                                         www.iaees.org 

Relation between variables 1kE  and 1kB  can be described with the following equation: 

11   kk CBE .                                                               (4) 

In (4) C  is productivity of butterflies. Below it will be assumed that productivity depends on kL , 

)( kLCC  . This function decreases with increase of number of larvae, and asymptotically it goes to zero: 

0)( C , 0
kdL

dC
.                                                  (5) 

Simple function which satisfies conditions (5) can be presented in the form: 

3
2

1

1 c
kLc

c
C


 .                                                             (6) 

In (6) all parameters jc  are non-negative constants. Taking into account that number of butterflies is real 

invisible variable (amount of this variable is rather difficult to determine in field conditions) it must be deleted 

from the model. Combining equations (1) and (4) we get 

kk PCE 11  .                                                             (7) 

In (7) functions in right-hand side satisfy to conditions (2) and (5), and in simple cases can be presented in 

forms (3) and (6).   

Let 2  be a quota of eggs successfully transformed into larvae, 10 2   . Below it will be assumed 

that const2 . Thus, the following equation must be added to model: 

121   kk EL  .                                                              (8) 

The final equation is analog of Moran – Ricker model (Moran, 1950; Ricker, 1954):  

1
11


  kL

kk eLP  .                                                         (9) 

In (9) parameter   corresponds to influence of self-regulative mechanisms on larvae’s surviving, and 

expression }{ 1 kLExp   is equal to quota of larvae successfully transformed into pupae. Combining 

equations (7), (8), and (9) we obtain ELP-model of insect population dynamics.  

Model (7)-(9) has reach set of dynamic regimes (Nedorezov, 2014) including cycles of all lengths and 

chaotic trajectories. Model has eight non-negative parameters. Initial values of model variables are unknown 

parameters too, and must be determined at a process of parameter estimation. Note if parameters of model are 

known knowledge of initial value for 1E  is sufficient for calculation of model trajectory.  

3 Used Time Series 

Analyzing time series on pine looper moth population dynamics can be free downloaded in Internet (NERC 

Centre for Population Biology, Imperial College (1999) The Global Population Dynamics Database, N 2727, 
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N 2728 and N 2729). In the first case (time series N 2727) all values are presented in units “average number of 

eggs per squared meter”; in the second case (time series N 2728) values are presented in units “average of 

larva per squared meter”; in the third case (time series N 2729) values are presented in units “average of pupae 

per squared meter”. In the first case the volume of sample is equal to 15 (first element of the sample was 

obtained in 1950). In the second case the volume of the sample is equal to 14: first element of this sample was 

also obtained in 1950 but the respective value for 1962 is absent. In a result of this gap in dataset first twelve 

values were used for statistical analyses only. In the third case sample size is equal to 14: first value was 

obtained in 1951.  

All values were collected in the Netherlands, in the North-West part of the national park De Hoge Veluwe 

(total area of this park is equal to 20 ha) where Scottish pines are presented. Taking into account that all 

datasets were collected in one and the same place and population, in current situation we have strong 

correlated time series. As it was obtained before (Nedorezov, 2010), the generalized logistic model (Moran, 

1950; Ricker, 1954) gives the best approximation for time series on pine looper moth fluctuations for every 

separated time series. But some specific properties of this model didn’t allow determination of asymptotic 

stable dynamic regime of population.  

 

4 Statistical Criterions 

Before estimating of model parameters and/or constructing minimizing function it is necessary to describe a 

list of requirements to model. What does it mean that model corresponds to considering time series? In 

literature (Bard, 1974; Draper and Smith, 1998) one can find following basic requirements to set of deviations 

between model trajectory and empirical time series: model gives good fitting of time series if and only if 

deviations are values of independent stochastic variables with Normal distribution (with zero average), and 

there are no serial correlation in sequence of residuals.  

Note, that normality of residuals is rather strong requirement for residuals. It can be changed onto 

requirement of symmetry of distribution with respect to origin and onto requirement to have monotonic 

branches of density function (monotonic decreasing branch in positive part, and monotonic increasing in 

negative part of straight line). Property of symmetry was checked with Kolmogorov – Smirnov test, Lehmann 

– Rosenblatt test, and Mann – Whitney test (Bolshev and Smirnov, 1983; Likesh and Laga, 1985; Hollander 

and Wolfe, 1973). Monotonic behavior of branches of density function was tested with Spearmen rank 

correlation coefficient. Testing of absence/existence of serial correlation in sequence of residuals was provided 

with Swed – Eisenhart test (Draper and Smith, 1998) and test on series of “jumps up” and “jumps down” 

(Likesh and Laga, 1985). Note, that all used tests pointed out above are nonparametric criterions. 

We will say that   is a feasible set in a space of model parameters (with initial values for variable L ) if 

for all element from this set hypotheses about absence of serial correlations, about symmetry of distributions, 

and monotonic behavior of branches of density functions cannot be rejected for every set of deviations (three 

sets) and for selected significance levels. In figure 1 there is a projection of feasible set   on plane ),( 11 gc  

(5% significance level for all statistical criterions). As we can see in this Fig. 1  , and there are no black 

points in domain 111 gc ; it means that observed time series do not correspond to regime of population 

extinction.  
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Fig. 1 Projection of feasible set   onto plane ),( 11 gc . 111 gc  is bifurcation curve which is a boundary of zone of 
population extinction (empty set). 

 

Within the boundaries of feasible set one can use any minimizing function and find respective values of 

parameters. But it is not obligatory step in process of parameter estimations: statistical criterions can play roles 

of filter for points of feasible set. Let us assume that hypothesis about symmetry of distribution cannot be 

rejected with 5% significance level. If this hypothesis cannot be rejected with 10% significance level it means 

that we have stronger result. Strongest results can be obtained if we cannot reject hypothesis about symmetry 

with 95% or 99% significance level. 

For Kolmogorov – Smirnov test significance level was changed on 95%, and for Lehmann – Rosenblatt 

test significance level was changed on 80%. All other criterions were used with previous significance level in 

5%. It allowed finding two points in space of model parameters only. Below two dynamic regimes 

corresponding to determined points are considered separately. For third dynamic regime parameters were 

found at minimizing of loss-function which is equal to sum of squared deviations for all time series. 

Remark. For determination of points of set   stochastic values with uniform distribution in a set were 

obtained in a following part of space of model parameters: ]200,0[1 E , ]1,0[2  , ]800,0[1 c , 

]10,0[2 c , ]5.2,5.0[3 c , ]1,0[1 g , ]6,0[2 g , ]1.4,1.0[3 g , ]2,0[ . In fig. 1 there are 106 
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points of set  . Probability p  of event that stochastic point (with uniform distribution) belongs to   is 

equal to 0008182.0  approximately.  

 

5 First Case 

First point has following coordinates: 1162.02  , 34.3501 c , 31.52 c , 41.13 c , 92.01 g , 

0.42 g , 27.33 g , 021.0 . Initial value for eggs 76.1951 E . Results of fitting are presented in 

figure 2. Calculation of autocorrelation function for 20000 steps (after 106 free steps of process) shows that 

values of this function for lags k3 , ,...2,1k , are greater than 965.0 . It means that asymptotic stable 

dynamic regime of pine looper moth is close to nonrigourous 3-cycle. Projection of asymptotic trajectory (for 

20000 values) onto plane density of eggs – density of larvae is presented in Fig. 3. Similar types of pictures are 

observed for projections in other coordinate planes. 

As one can see in Fig. 3, there are three non-intersected sets of points. First (smallest) set of points is 

close to origin. Second set of points belongs to domain ]1,0[]5,0[  . The last (biggest) set belongs to domain 

]6,3[]45,30[  .  

 
(a) 

 

 
 

(b) 
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(c) 

 
Fig. 2 Results of fitting of time series (first case). Broken lines are model trajectories. Solid lines correspond to empirical datasets. 
Cases: a – egg’s density dynamics; b – larva’s density dynamics; c – pupae’s density dynamics. 

 

 

Fig. 3 Projection of asymptotic stable limit cycle on plane “density of eggs – density of larvae”. 

 

 

6 Second Case 

Second point has following coordinates: 1285.02  , 96.2131 c , 91.02 c , 08.13 c , 506.01 g , 

446.02 g , 983.13 g , 105.0 . Initial value for eggs 26.1821 E . Results of fitting are presented 

in Fig. 4. Calculation of autocorrelation function for 20000 steps (after 106 free steps of process) shows that for 

these parameters asymptotic stable regime is strong 2-cycle of ...ababab  type. Coordinates of cycle are 

following: 49.35a  and 35.5b  for eggs, 56.4a  and 69.0b  for larvae, 83.2a  and 64.0b  

for pupae.  
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7 Third Case 

Denote as }{ *
kE , }{ *

kL , }{ *
kP  empirical samples corresponding to respective variables of ELP-model. Let   

be a vector of model parameters, and )(kk EE  , )(kk LL  , )(kk PP   are the components of 

respective solution of ELP-model. For third case vector of parameters *  was determined with minimization 

of the following loss-function: 





15

2

2*
12

1

2*
15

1

2* ))(())(())(()(
k

kk
k

kk
k

kk PPLLEEQ  , 

)(min)( *  QQ


 . 

Minimum of loss-function Q  was found for following values of parameters, 1.20939min Q : 149.02  , 

22.3011 c , 302.02 c , 495.13 c , 498.01 g , 911.02 g , 234.03 g , 134.0 . Initial 

value for eggs 27.481 E . For the first case 9.68245min Q , for the second case 1.54764min Q . 

Results of fitting are presented in Fig. 5.  

Calculation of autocorrelation function for 20000 steps (after 106 free steps of process) shows that for 

these parameters asymptotic stable regime is strong 2-cycle of ...ababab  type. Coordinates of cycle are 

following: 06.47a  and 71.25b  for eggs, 01.7a  and 83.3b  for larvae, 73.2a  and 

29.2b  for pupae. Note that model trajectory presented in fig. 5 is close to stable limit 2-cycle. 

 

 

(a) 
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(b) 

 

 

(c) 

 
Fig. 4 Results of fitting of time series (second case). Broken lines are model trajectories. Solid lines correspond to empirical 
datasets. Cases: a – egg’s density dynamics; b – larva’s density dynamics; c – pupae’s density dynamics. 
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(a) 

 

(b) 

 
(c) 

Fig. 5 Results of fitting of time series (third case). Broken lines are model trajectories. Solid lines correspond to empirical 
datasets. Cases: a – egg’s density dynamics; b – larva’s density dynamics; c – pupae’s density dynamics. 
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8 Conclusion 

Presented method of model parameter estimations is based on set of (obvious) statistical criterions which must 

be satisfied for model when it is applied for fitting of empirical time series. It is based on assumption of 

symmetry of distribution of deviations between model trajectory and time series, on assumption of monotonic 

behavior of branches of density function, and on assumption of absence of serial correlation in sequence of 

residuals. These properties of sets of deviations were checked with following tests: Kolmogorov – Smirnov 

test, Lehmann – Rosenblatt test, Mann – Whitney test, Swed – Eisenhart test, and test on series of “jumps up” 

and “jumps down”. Spearmen rank correlation coefficient was used for checking of hypothesis about 

monotonic behavior of branches of density functions.  

Set of points in space of model parameters was called as feasible set if deviations were satisfied to all 

pointed out statistical criterions (for fixed significance levels). For 5% significance level projection of 

fragment of feasible set onto plane “maximum of productivity of butterflies – maximum of quota of survived 

pupae during winter time” is presented in Fig. 1 for applied ELP-model to fitting of pine looper moth 

population dynamics in Netherlands.  

It is known that changing of significance level can lead to increase or decrease of number of points in 

feasible set. In current publication it was assumed that symmetry of distribution is most important 

characteristics of set of deviations. Symmetry of distribution of deviations means that used method of data 

collection had not regular errors, and this property of distribution is truly important. For Kolmogorov – 

Smirnov test significance level was increased up to 95% (if we cannot reject Null hypothesis with this 

significance level it means that we have to accept hypothesis about symmetry of distribution), and for 

Lehmann – Rosenblatt test significance level was increased up to 80%. In a result of this operation of changing 

of significance levels number of points in feasible set was decreased to two points. Note that these points were 

found without constructing of any minimizing or maximizing functions which are normally used within the 

framework of least square method (LSM) and maximum likelihood method.  

Inverse to LSM approach was used in third variant: sum of squared deviations was minimized within the 

limits of feasible set. In all considered cases we got that pine looper moth fluctuations correspond to regime of 

cyclic dynamics. In two cases it was strong 2-cycle, and in one case it was non-rigourous 3-cycle. It is also 

important to note that in all cases estimations of coefficients of transformation of pupae into larvae are very 

close to each other, estimations are bigger than 0.11. In two cases estimations of coefficients of surviving of 

individuals during the winter time, and coefficients of self-regulation (coefficient of transformation of larvae 

into pupae) are close to each other too. It can be considered as additional supporting background (first 

background is formed by the set of used statistical criterions) for hypotheses about dynamic regimes of pine 

looper moth. 
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