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Abstract 

Analysis of problems of simplest variant of linear regression between two variables is presented. It was 

demonstrated that in classic situation problem of estimation of regression line parameters hasn’t a correct 

solution. It was also obtained that “paradox of two regressions” (Szekely, 1986) cannot be solved as a 

presentation of two intervals of (possible) changing of parameters of real regression line. Numerical examples 

allowed demonstrating that real parameters of regression line can be out of intervals defined by parameters of 

two regressions. 
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1 Introduction 

Statistics with its methods, objects, methodology and so on became a science many years ago when abacus 

played the role of strongest apparatus for mathematical calculations. But modern students (may be, all of them) 

may never heard about “abacus-computer” and how it is possible to use this “computer”. What is the reason to 

have useless information about abacus if we have modern computer? Moreover, at every time we can find in 

Internet useful and detailed instructions for calculations we want to realize. Sometimes in Internet we can find 

on-line services which allow providing required calculations without problems.  

In most cases we try to follow instructions and recommendations described in books, textbooks etc., and at 

that moments we don’t think about “genetics of statistics” which exists in modern statistics from ancient 

“abacus’ years”. Every science has its own genetics, and statistics isn’t an exception from this rule. This “own 

genetics” can be observed in scientific books, textbooks, software… And we analyze datasets, we make 

qualitative and quantitative conclusions on the base of these calculations, and we don’t think about correctness 

of providing calculations.  

Everybody can ask – is it bad condition for calculations if we use methods with “abacus’ genetics”? Honest 

answer is following – yes, in various situations use of these methods can lead to appearance of incorrect or 

false results.  
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2 Traditional Linear Regression and Comfortless Questions 

Let )},{( kk yx , Nk ,...,1 , be an initial sample. N  is a number of provided observations (sample size). 

For example, kx  can be a diameter of tree, and ky  is a height of the same tree. Respectively, k  is a number 

of this tree. These amounts can also be heights and weights of separated individuals, lengths and weights of 

crocodiles and so on. Additionally, k  can be (discrete) time, thus existing sample is changing in time of any 

parameters of one and the same object. At the beginning let’s consider a case when k  is a number of object.  

2.1 First variant 

Measurements cannot be provided without any errors; in various situations it is assumed that these stochastic 

errors have Normal distribution with zero average (Lakin, 1990; Bard, 1974; Draper and Smith, 1981; 

McCallum, 2000; Nedorezov, 2012).  

Assumption about Normality of errors is a first serious problem of modern biometrics. First of all, 

Normal distribution is unbounded, and with positive probability we can get very big number with plus or 

minus. It is a good condition to ask – what is real condition of researcher if he or she can write a phrase 

“weight of larva is equal to minus one kilogram”? If we assume that errors have a Normal distribution with 

positive probability we can get error in several tons for weight of larva. From that point of view assumption 

about Normality does not look normal. 

One more question is following: what is a reason to assume that errors have Normal distribution? One of 

typical answers is next: in nature various amounts have Normal distribution, we have Central Limit Theorem 

(Borovkov, 1984; Sevastianov, 1982) and so on. But this theorem doesn’t allow concluding that all amounts in 

the nature have Normal distribution… 

Let’s assume that for selected intervals of changing of variables we can observe linear dependence:  

baxy  ,                                                           (1) 

This assumption is our hypothesis, and we have to check it using existing sample. In other words, if we 

know errors of measurements ( k  for ky , and k  for kx ) we can determine/calculate real values of variables 

which (according to our hypothesis) belong to straight line. It is possible to point out parameters a  and b , and 

following equation is truthful:  

bxay kkkk  )(  . 

It can be presented in other form: 

kkkk abaxy   .                                    (2) 

In left hand part of equation (2) there are two unknown amounts (parameters a  and b ), in right hand 

side there are three unknown amounts (it is true for every fixed value of k ). Problem is following: 

find/estimate values of parameters a  and b  when distance between straight line and sample’s points 

),( kk yx  has its minimum. But it looks like a disaster – on the plane ),( yx  distance between two points 

doesn’t determine. We cannot use Euclidean distance because in such a situation we’ll need to summarize 

meters with kilograms. But where is an exit out of this blind alley? Many years ago following solution was 

recommended: to summarize squared expressions in left-hand side of equation (2) and to minimize obtained 

sum using respective values of parameters a  and b : 

 
2

1

),( 



N

k
kk baxybaQ .                             (3) 

But before finding a minimum of expression (3) we have to find acceptable explanation for next unobvious 

points: what is a reason to use squared expressions? What is real relation of expression (3) to considering 

biological problem? And what is a real sense of expression baxy kk  ? Answer on two first questions is 
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obvious: expression (3) has no relation to considering biological problem, and there are no objective and 

obvious reasons to use squared expressions. May be, sum of squared differences is most comfortable 

expression which allows (after primitive mathematical calculations) finding of minimum of functional form (2). 

But if we want to use other degrees in (3) (in most cases it will lead to use absolute values for differences 

baxy kk  ) it can lead to serious problem in finding of minimum of functional form (3). 

Answer on last question is rather obvious too: taking into account that baxk   is value of linear function 

calculated in point kx , then difference baxy kk   is equal to distance between straight line and point 

),( kk yx  calculated along y  ordinate line. In other words, it means that we postulate that values ky  of 

sample were obtained with (Normal) errors and values kx  were determined without errors. But it is not true 

because we know that both variables were estimated with errors. 

Straight line (1) with parameters which gives minimum for (3) has name “regression of y  on x ” (Lakin, 

1990). As it was pointed out above this straight line has no relation to real regression line we want to find 

because it is based on non-correct assumption that kx  were determined without errors. We can rename our 

variables and find one more straight line which is called “regression of x  on y ” (Lakin, 1990). This second 

line is based on assumptions that all values ky  were determined without errors, and kx  were obtained with 

(Normal) errors.  

Finally, we have two straight (regression) lines which are based on non-correct assumptions. Existence of 

two regression lines got a name “paradox of two regressions” (Szekely, 1986). One of possible solutions of 

this paradox is following: we must point out intervals for parameters:  

),max(),min( 2121 aaaaa  , 

),max(),min( 2121 bbbbb  . 

It was supposed that it will give us best solution of paradox. But it is good condition to ask these inequalities: 

who can give guarantees that pointed out inequalities will be truthful for all possible samples? And one more 

question: if both regression lines have no relation to biological problem who can give guarantees that pointed 

out inequalities will give us something which has any relation to problem? 

Let’s consider one more important side of considering problem. Initially it was postulated that errors for 

both variables (2) have Normal distribution. It looks natural and obvious that after determination of values of 

parameters we must check respective hypotheses. We must check correspondence of error’s distribution to 

Normal, equivalence of average to zero, and independence of observed errors. If one of these hypotheses 

cannot be accepted than hypothesis about existence of linear dependence between variables must be rejected. 

The question is: can we do it or not (Fig. 1)? 
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Fig. 1 Notations are presented in text. 

 

Let’s assume that we know values of real regression line ( 1L , fig. 1), and we know also real values 

),( **
kk yx  which belong straight line 1L . As it was assumed above these values were estimated with errors: 

y
kkk eyy  * , x

kkk exx  * . 

Thus Normal distribution must be observed for linear combination (Fig. 1) 

y
k

x
kk eae  . 

On the other hand, for real initial sample we have no idea about points ),( **
kk yx ; if we know occupation of 

line 1L  we can calculate deviations kk xx **  and kk yy **  (fig. 1), but in general case these deviations have 

no correspondence with errors k . Thus it looks rather strange if we decide to check normality of these 

deviations. Moreover, a’priori we have no ideas about occupations of points ),( **
kk yx  and straight line 1L  too. 

We can determine, for example, occupation of line 2L  (regression of y  on x ) with parameters which give 

minimum for functional (3). Respectively, we can obtain two sets of deviations kk xx 2  and kk yy 2  (fig.1). 

But these deviations have no relations to postulates too. In a result of provided activities described above we 

have absurd situation: we postulate properties of concrete set of stochastic variables, but we have no 

possibilities to check postulated properties and have to check properties for deviations which have no relation 

to postulates…  

Our simple objections allow us concluding following statement: problem of linear regression in the form 

described above haven’t correct solution. In this sense existing solution of problem of linear regression looks 

like a great joke of great scientists.  

2.2 Second variant 

Let’s consider other variant when k  corresponds to time moments of providing measurements of variables x  

and y . In this case we have two correlated time series (for example, corresponding to changing of weight and 
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height in time for one and the same organism, diameter and height of one and the same tree and so on). For 

every time series we have to formulate its own hypothesis. For example, 

)()()( tbtfatx x
xx  .                                                (4) 

In (4) )(tf  can be a non-linear function (for example, if we are talking about biomass, or about diameter and 

height of tree this function can be a monotonic increasing S-type function). Amounts )(tx  are independent 

stochastic variables with Normal distribution and zero average. Taking into account that time t  are measured 

without errors then after estimation of values of parameters xa  and xb  (may be with using of functional (3)-

type) we have good possibilities to check properties of following deviations:  

xkxk
x
k btfax  )( . 

Note, that properties of these deviations were postulated above.  

If in a result of calculations we have to demonstrate that there is a linear dependence between observed 

variables, we have to check the following hypothesis for variable y : 

)()()( tbtfaty y
yy  .                                                 (5) 

If both sets of deviations have required properties, then we have a good background for conclusion about 

existence of linear dependence between variables x  and y .  

Finally, after consideration of two different variants we have to conclude that in the second case we can 

get correct solution of problem. But for finding a solution we have to have two additional hypotheses about 

changing of variables in time. And we have to check these hypotheses.  

In first case correct solution cannot be obtain in principle. It is important to note that various biological 

problems can get correct solutions because in various situations together with basic variables researches 

determine age classes and/or time moments. 

Remark. If it is assumed that between variables x  and y  we have allometric relation (Terskov and Terskova, 

1980; Kofman, 1986): 
baxy  , 

then we have to check two following hypotheses: 

)()()( ttfatx x
x  ,  

)()()( ttfaty yb
y  . 

Thus, for checking of any hypothesis (linear or non-linear) we have to have two or more hypotheses of other 

level. In other words, correct solution of regression problems requires existence of respective theory or at least 

existence of group of combined hypotheses. If we haven’t good theory we haven’t correct solution. Various 

statistical models without serious biological interpretations of parameters cannot save a situation. 

2.3 Correct testing of hypotheses 

Let’s assume that our basic hypothesis is following: we have a linear dependence between variables x  and y . 

Additionally we’ll assume that values of these variables were estimated at time moments kt  with errors, 

)( kk txx  , )( kk tyy  , Nk ,...,1 . As it was noted above, before checking of basic hypothesis we have 

to check two other hypotheses (4) and (5). Checking of two pointed out hypotheses must contain following 

steps. In spaces of parameters ),( xx ba  and ),( yy ba  (let’s note that these spaces of parameters are different) 

we have to find stochastic points and for every points we have to check properties of deviations 

})({ xkxk
x
k btfaxe   and })({ ykyk

y
k btfaye  . In 4-dimensional space point belongs to 

feasible set *  if and only if following properties are truthful (for a’priori determined significance level, for 

example, for 5%): 
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1. Distribution densities of deviations are symmetric with respect to ordinate line. It can be provided with tests 

of homogeneity of two samples, for example, for }{ x
ke  and }{  x

ke  where }{ x
ke  are positive deviations and 

}{  x
ke  are negative deviations with sign minus. For checking of homogeneity of two samples Kolmogorov – 

Smirnov test, Lehmann – Rosenblatt test, Munn – Whitney test and othe criterions can be used (Kobzar, 2006; 

Likes and Laga, 1985; Bolshev and Smirnov, 1983). 

Symmetry of distribution density means that errors of measurements to both sides must be observed with 

equal probabilities.  

2. Branches of density functions for negative arguments (when 0x  and 0y ) are monotonic increasing 

functions, and branches are monotonic decreasing functions for positive arguments. For checking of such 

behavior of branches of density functions Spearmen rank correlation coefficient can be used (Bolshev and 

Smirnov, 1983; Lakin, 1990; Nedorezov, 2015, 2016 a,b,c,d). 

Let’s consider a particular case for positive deviations }{ x
ke  only, and let }{ ,

x
upke  be an ordered set of 

these deviations:   x
upm

x
up

x
up eee ,,2,1 ... . m  is a size of this sample. Monotonic decreasing of branch of 

density function for positive arguments means that thickness of points on a straight line decreases with 

increase of argument. In other words, in ideal case length of first interval ],0[ ,1
x
upe  is less than length of 

second interval ],[ ,2,1
 x
up

x
up ee  and so on. We can compare ideal variant with situation which is determined by 

existing sample. And we have to reject Null hypothesis 5.0  where   is Spearmen rank correlation 

coefficient, for fixed significance level and alternative hypothesis 5.0 .  

Monotonic decreasing of branch of density function for positive arguments means that bigger errors can 

be observed with smaller probabilities.  

3. We have to have a background for conclusion that }{ x
ke  and }{ y

ke  are values of independent stochastic 

variables. If it is not true we can say that our model (in considering situation it is btaf )( ) is not suitable for 

fitting of time series. In such a situation we have to modify model, or construct a new one.  

For checking of respective hypotheses we can use, for example, Swed – Eizenhart test, test of “jumps up 

– jumps down” (Bard, 1974; Draper and Smith, 1981; Likes and Laga, 1985; Hettmansperger, 1987; Hollander 

and Wolfe, 1973). 

Remark. It is very important to note that feasible set *  can be considered as confidence domain: 

For every element of this set deviations satisfy to all selected statistical criterions, and we have no reasons for 

saying that model isn’t suitable for fitting of time series.  

 

3 Numerical Example 

Let’s consider (artificial) numerical example for checking of described above solution of “paradox of two 

regressions”. Let 1a  and 0b . Initial sample (without additive stochastic deviations) is following: 

0.11 x , 05.12 x ,…, 95.120 x , 0.221 x . In table 1 there are initial samples with Normal errors 

(with zero average and various values of  ). “Errors of measurements” were modeled with standard Excel 

random generator. 

3.1 Case 1 

For first column (table 1) we have following results: 00876.0x , standard error is equal to 0.0222; for 

Shapiro – Wilk test we have 4126.0 valuep , for Anderson – Darling test we have 

3779.0 valuep , for Cramer – von Mises test 3872.0 valuep , for Lilliefors test 

4159.0 valuep , for chi-squared test 1991.0 valuep , and for Shapiro – Francia test 

4538.0 valuep  (Shapiro, Wilk, 1965; Anderson, Darling, 1952, 1954; Lilliefors, 1967, 1969; Thode, 
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2002; Vasiliev, Melnikova, 2009; Shapiro, Francia, 1972). Thus, for first column we have no reasons for 

rejecting Null hypothesis about Normality of deviations.  

For second column we have: 010905.0y , standard error is equal to 0.0183; for Shapiro – Wilk test 

9978.0 valuep , for Anderson – Darling test 9723.0 valuep , for Cramer – von Mises test 

9523.0 valuep , for Lilliefors test 9488.0 valuep , for chi-squared test 9554.0 valuep , 

and for Shapiro – Francia test 9871.0 valuep . Thus, in this situation we have to accept Null hypothesis 

because amounts of valuep   are very big.  

 

Table 1 Datasets for testing example. 

1.0  5.0  1  
x  y  x y x y  

1.021 1.034 0.064 1.113 1.086 1.852 
1.157 0.96 0.249 0.274 0.421 0.632 
1.059 1.113 1.633 1.07 0.908 1.649 
0.995 0.984 1.482 1.259 0.475 1.39 
1.139 1.169 1.195 1.678 1.848 0.922 
1.16 1.25 0.591 1.414 1.033 0.658 
1.307 1.294 0.836 0.866 2.108 1.435 
1.248 1.277 1.089 1.469 1.441 0.926 
1.304 1.482 0.763 0.962 0.926 2.135 
1.385 1.431 1.168 1.927 1.367 1.649 
1.689 1.506 1.427 1.023 0.779 1.081 
1.65 1.65 2.233 1.589 1.257 1.33 
1.681 1.5 1.915 1.787 2.13 1.064 
1.702 1.71 2.017 0.859 1.638 2.42 
1.694 1.836 0.966 1.518 1.386 1.475 
1.75 1.801 1.15 1.971 1.577 0.844 
1.902 1.901 2.896 1.392 2.245 1.347 
2.069 1.775 1.435 1.509 1.497 1.49 
1.989 1.937 1.864 2.453 1.562 1.446 
1.885 2.124 2.049 2.936 1.121 1.541 
1.898 1.995 3.519 1.775 2.276 0.921 

 

Linear regression of y  on x  is determined by the equation: 

083.09464.0  xy , 8718.02 R .                                                 (6) 

Average of deviations from this straight line (calculated along ordinate line y ) is equal to 5.66·10-16. Standard 

error is equal to 0.02775. For Shapiro – Wilk test for these deviations 2851.0 valuep , for Anderson – 

Darling test 08987.0 valuep , for Cramer – von Mises test 0524.0 valuep , for Lilliefors test 

06144.0 valuep , for chi-squared test 09158.0 valuep , and for Shapiro – Francia test 

2035.0 valuep . Thus, for 5% significance level hypothesis about Normality of deviations from 

regression line (6) cannot be rejected by all used tests. But for several criterions amount of valuep   is very 

close to threshold value. For three criterions Null hypothesis must be rejected with 10% significance level.  

Comparison of known deviations (for second column of table 1) with deviations from regression line (6) 

shows that for Munn – Whitney test 9603.0 valuep , for Kolmogorov – Smirnov test 

8531.0 valuep . We have amazing picture: we haven’t a background for conclusion that two sets of 

deviations have different distribution functions. On the other hand, distribution of known deviations is close to 

Normal, and we have no reasons to say the same about deviations from line (6). 

Linear regression of x  on y  is determined by the equation: 

1269.00855.1  xy .                                                           (7) 
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Amount of 2R  is rather big, 8718.02 R . Two linear equations (6) and (7) allow us presenting following 

inequalities:  

0855.19464.0  a , 083.01269.0  b . 

These inequalities are truthful for real values of regression line.  

Average of deviations from this straight line (calculated along ordinate line x ) is equal to 

3.54·10-16. Standard error is equal to 0.0274. For Shapiro – Wilk test for these deviations 

1221.0 valuep , for Anderson – Darling test 07642.0 valuep , for Cramer – von Mises test 

05116.0 valuep , for Lilliefors test 1046.0 valuep , for chi-squared test 06999.0 valuep , 

and for Shapiro – Francia test 09731.0 valuep . Thus, with 5% significance level hypothesis about 

Normality for these deviations from regression line (7) cannot be rejected. But for several criterions amount of 

valuep   is very close to threshold value. For four criterions Null hypothesis must be rejected with 10% 

significance level.  

Comparison of known deviations (for first column of table 1) with deviations from regression line (7) 

shows that for Munn – Whitney test 7059.0 valuep , for Kolmogorov – Smirnov test 

9829.0 valuep . We can observe amazing picture again: we haven’t a background for conclusion that 

two sets of deviations have different distribution functions. On the other hand, distribution of known 

deviations is close to Normal, and we have no reasons to say the same about deviations from line (7). 

3.2 Case 2 

For deviations of third column (table 1) we have 0457.0x . Standard error is equal to 0.1411. For Shapiro 

– Wilk test for these deviations 2827.0 valuep , for Anderson – Darling test 4308.0 valuep , for 

Cramer – von Mises test 5223.0 valuep , for Lilliefors test 7711.0 valuep , for chi-squared test 

406.0 valuep , and for Shapiro – Francia test 2747.0 valuep .  

For deviations of fourth column (table 1) we have 03124.0y . Standard error is equal to 0.09841. 

For Shapiro – Wilk test for these deviations 7549.0 valuep , for Anderson – Darling test 

6691.0 valuep , for Cramer – von Mises test 6433.0 valuep , for Lilliefors test 

8604.0 valuep , for chi-squared test 06999.0 valuep , and for Shapiro – Francia test 

6855.0 valuep . Thus, we have no reasons for rejecting Null hypotheses for both columns with 5% 

significance level. 

Linear regression of y  on x  (for fourth and third columns of table 1) is determined by following 

equation:  

0452.12912.0  xy , 1701.02 R .                                             (8) 

Average of deviations from this straight line is equal to 4.1237·10-16. Standard error is equal to 0.1159. For 

Shapiro – Wilk test for these deviations 595.0 valuep , for Anderson – Darling test 

598.0 valuep , for Cramer – von Mises test 6162.0 valuep , for Lilliefors test 

6309.0 valuep , for chi-squared test 3232.0 valuep , and for Shapiro – Francia test 

4795.0 valuep . Thus, even with 32% significance level Null hypothesis for deviations from line (8) 

cannot be rejected (it is observed for all used tests). 

Comparison of known deviations (for fourth column of table 1) with deviations from regression line (8) 

shows that for Munn – Whitney test 9405.0 valuep , for Kolmogorov – Smirnov test 1 valuep . 

We haven’t a background for conclusion that two sets of deviations have different distribution functions. 

Moreover, we have to accept Null hypothesis. 

Linear regression of x  on y  is determined by following equation: 

02053.171164.1  xy .                                                           (9) 
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From two linear equations (8) and (9) we get following inequalities for parameters of real regression line (1): 

71164.12912.0  a , 0452.102053.1  b . 

Note, these inequalities are truthful.  

Average for deviations from line (9) is equal to 1.269·10-16. Standard error is equal to 0.1641. For Shapiro 

– Wilk test for these deviations 08182.0 valuep , for Anderson – Darling test 05871.0 valuep , 

for Cramer – von Mises test 05521.0 valuep , for Lilliefors test 1708.0 valuep , for chi-squared 

test 1546.0 valuep , and for Shapiro – Francia test 06298.0 valuep . Thus, with 5% significance 

level all used criterions don’t allow rejecting Null hypothesis about Normality of deviations from regression 

line (9). But for four criterions Null hypothesis must be rejected with 10% significance level. 

Comparison of known deviations (for third column of table 1) with deviations from regression line (9) 

shows that for Munn – Whitney test 901.0 valuep , for Kolmogorov – Smirnov test 

8531.0 valuep . We can observe amazing picture again: we haven’t a background for conclusion that 

two sets of deviations have different distribution functions. On the other hand, distribution of known 

deviations is close to Normal, and we have no reasons to say the same about deviations from line (9). 

3.3 Case 3 

For deviations of fifth column (table 1) we have 11519.0x . Standard error is equal to 0.09991. For 

Shapiro – Wilk test for these deviations 5641.0 valuep , for Anderson – Darling test 

5847.0 valuep , for Cramer – von Mises test 5607.0 valuep , for Lilliefors test 

5753.0 valuep , for chi-squared test 3232.0 valuep , and for Shapiro – Francia test 

6638.0 valuep . 

For deviations of sixth column (table 1) we have 15681.0y . Standard error is equal to 0.11748; For 

Shapiro – Wilk test for these deviations 0722.0 valuep , for Anderson – Darling test 

02441.0 valuep , for Cramer – von Mises test 01498.0 valuep , for Lilliefors test 

0135.0 valuep , for chi-squared test 02306.0 valuep , and for Shapiro – Francia test 

08726.0 valuep . For deviations of fifth column we have no background for rejection of Null 

hypothesis even with 32% significance level. For deviations of sixth column with 10% significance level we 

have to reject Null hypothesis for all used criterions. Four criterions allow rejecting Null hypothesis with 5% 

significance level.  

Linear regression of y  on x  (for sixth and fifth columns) is determined by the equation: 

3897.10336.0  xy , 0016.02 R .                                                 (10) 

Average for deviations from this regression line (10) is equal to -6.1855·10-16. Standard error is equal to 

0.10031. For Shapiro – Wilk test for these deviations 5716.0 valuep , for Anderson – Darling test 

5084.0 valuep , for Cramer – von Mises test 4644.0 valuep , for Lilliefors test 

7223.0 valuep , for chi-squared test 5037.0 valuep , and for Shapiro – Francia test 

4739.0 valuep . Thus, even with 46% significance level Null hypothesis cannot be rejected.  

Comparison of known deviations (for sixth column of table 1) with deviations from regression line (10) 

shows that for Munn – Whitney test 2606.0 valuep , for Kolmogorov – Smirnov test 

365.0 valuep . Thus, we haven’t a background for conclusion that two sets of deviations have different 

distribution functions.  

Linear regression of x  on y  is determined by the equation:  

25689.316013.21  xy .                                                           (11) 

Two regression lines (10) and (11) allow us to point out next inequalities: 

a 6013.21,0336.0 , 3897.1,25589.31b . 
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Consequently, we can conclude that “paradox of two regressions” (Szekely, 1986) cannot be solved as a 

presentation of two intervals of (possible) changing of parameters of real regression line. As we can see both 

parameters are out of intervals determined by parameters of regression lines (10) and (11).  

Average for deviations from this regression line (11) is equal to 1.0574·10-17. Standard error is equal to 

0.11779. For Shapiro – Wilk test for these deviations 6784.0 valuep , for Anderson – Darling test 

8613.0 valuep , for Cramer – von Mises test 9311.0 valuep , for Lilliefors test 

8268.0 valuep , for chi-squared test 7358.0 valuep , and for Shapiro – Francia test 

8335.0 valuep . Thus, even with 73% significance level Null hypothesis cannot be rejected.  

Comparison of known deviations (for fifth column of Table 1) with deviations from regression line (11) 

shows that for Munn – Whitney test 3963.0 valuep , for Kolmogorov – Smirnov test 

6028.0 valuep . Thus, we haven’t a background for conclusion that two sets of deviations have 

different distribution functions. 

 

4 Conclusion 

Now we can summarize results described above. In a result of analysis of paired observations researches 

obtain two straight lines which are based on unreal assumptions. Respectively, these straight lines have no 

relation to considering problem, and obtained estimations of parameters of these lines have no relation to 

problem too. But researches use these results (or results for one of regression lines) and present quantitative 

and qualitative conclusions about dependence of variables. May be, it is a good time to reconsider results of 

provided investigations and re-analyze existing datasets. 

Analysis of numerical examples shows that “paradox of two regressions” (Szekely, 1986) cannot be 

solved as a presentation of two intervals of (possible) changing of parameters of real regression line. In 

Example 1 we got that real parameters of regression line can be out of intervals defined by parameters of two 

regressions.  
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