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Abstract 

Chemical modification by grafting cellulose in the biological field produces a cellulosic material with 

improved absorption. Acrylamide was grafted onto cellulose fibers using a free radical process initiated by a 

redox initiator system: the ceric ion (ceric ammonium nitrate).  For the grafted cellulose, it is noted that the 

optimum pH is equal to 5 because of the presence of amide groups. Also, the adsorption capacity of chromium 

is greater than that of the grafted cellulose (Qe = 14.2 mg / g) et almost triple for copper and cadmium. The 

effect of concentration on retention is extremely important for chromium and cadmium, which have the 

retention of around 18/20 mg / g. The increase in ionic strength leads to a decrease in the amount of adsorbed 

metal ions resulting from the competition between these metal ions and salt ions. The results of a kinetic study 

for all the heavy metals indicated that the retention is extremely fast; it is almost instantaneous. Linear 

regressions shown that kinetics are controlled by the pseudo-second-order model. Thus, the chrome is 

controlled by the pseudo-first-order model. This is clearly confirmed by the values of the correlation factors 

corresponding to each model. The adsorption of isotherms in the cadmium and chromium concentrations 

chosen for initial experimental data were interpreted by the Redlich-Peterson and Langmuir models for 

unbleached and grafted cellulose. For copper, the Freundlich model best described the data of adsorption 

isotherms on unbleached cellulose, and the Redlich-Peterson and Langmuir models were the most appropriate 

for the retention of copper for the grafted cellulose.  
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1 Introduction  

Environmental protection is a major concern of our society, prompting us to encourage the development of 

processes for improving pollution control methods, while focusing on reducing pollution sources (Dubey et al., 

2015; Meravi and Prajapati, 2013, 2014). Water is the most vital natural source and, whether it is intended for 

human consumption, irrigation or simply discarded in the wild. It has become a major problem and a huge 

concern for and local authorities, and national and international organizations. It is imperative to check its 

quantitative and qualitative use.  

The massive and diversified discharge of industrial wastewater containing toxic residues into the natural 

environment is threatening the balance of the natural environment and ecosystems, especially for humans. This 

situation has made it imperative to save our lives by improving pollution control techniques and developing 

new processes in order to meet our needs, to preserve our ecosystem for future generations and to comply with 

international standards, which are characterized by increasingly restrictive water regulations. 

A variety of techniques have been used for the removal of certain chemical pollutants from industrial or 

domestic effluents. These techniques differ widely; they include adsorption, electrolysis, flotation, 

precipitation, ion exchange, liquid-liquid extraction and membrane filtration. 

However, the absorbency of some materials has always been preferred for their ability to elute micro-

pollutants. Less expensive materials for lead, cadmium, chrome, copper and arsenic removal from water 

include algae (Al-Degs et al., 2006;  Klimmek  et al., 2001), carbon cloth (Kadirvelu et al., 200) , peat (Ho et 

al., 2001) , agricultural by-products (Wafwoyo, 1999), lignin blast furnace slag (Srivastava et al., 1994), red 

mud (Altundogan et al., 2002 ), biomaterials (Minamisawa et al., 2004), bagasse fly ash (Gupta  and Trifunac, 

1993), iron oxide coated treated sand (Gupta et al., 2005) and mangrove rhizomes in wetlands (Chowdhury et 

al., 2017). Low cost adsorbents for water remediation have also been reviewed (Rodavic et al., 2001). For 

crude fibrous polymers, the elimination rate is as low as 30% to 35%. Thus, new opportunities for natural 

polymers have benefitted from the provision of original materials, referred to as generic biopolymers, because 

they are emerging materials with unique and unexplored properties, and offer interesting possibilities for use in 

new applications (Babu et al., 2013). 

These materials are in the form of cross-linked polymer networks and have the ability to absorb and retain 

a substantial amount of liquid. However, their major disadvantage is the weakness of their mechanical 

characteristics in the inflated state. Unlike conventional biopolymers, fibrous polymers exhibit excellent 

mechanical behavior due to a relatively high degree of orientation, namely 70%. Among the natural fibers, it is 

preferably used as an absorbent material in biomedical and hygienic applications. In the last few years, the 

rapid development of cost-effective paper-based technologies has been registered in the field (Genovese et al., 

2018).  

In a standardized atmosphere, cellulose in various physical forms can absorb up to 10% moisture. In a 

liquid medium, it has a great absorbency, thanks to its high capillarity. However, if the cellulose has a high 

affinity for water (hydrophilic), it retains little liquid in its internal network. The role of the capillary system of 

cellulosic products in the absorption of liquids is known. This capillary system can be modified in different 

ways such as: 

-Acting on the fiber module to increase the effective pore diameter. 

-Microfibrillation of the fiber to increase the specific surface of the adsorbent material, resistance to 

microbiological attack and thermal degradation (Gurdag et al, 2013), and water and oil repellency (Bayer et al, 

2011; Paul et al., 2016).   

-Bridging action to prevent pore destruction 

Polymer grafting can achieve sufficient swelling and increase the number of adsorbent sites. 
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To understand the concept of grafting, it should be known that all fibrous supports can be activated and 

modified imperceptibly to acquire properties that are revealed only in use. In the general scheme, the acquired 

properties will be due to the chemical nature of the monomers used; their intensity will be defined, as a first 

approximation, by the grafting rate. Activated sites are created on the polymeric material by breaking covalent 

bonds. This technique customizes the properties, making them unlike existing materials (Kaewtatip and, 

Tanrattanakul, 2008). Cellulose is the constituent that provides protection and support in plant organisms 

(Sarkar et al., 2009). It is the most abundant organic substance in nature. Indeed, it is estimated that a tree 

produces about 10 grams of cellulose per day. It is a homopolysaccharide composed of β-D-glucopyranose 

units linked together by a glycosidic bond β- (1- 4) (substitution of a hydroxyl group (OH) monovalent radical) 

of the hemiacetal of a sugar with a hydroxyl group of an alcohol of another sugar (Stannett et al., 1973; Stage 

2002). 

The origin of the specific properties of fibrous polymers is in the macromolecular structure. That enables 

us to modify the polymer and improve its properties. There are several ways to do this. The most used are 

mixing (blending), grafting and reticulation (Bhattacharyya and Misra, 2004). Several specific grafting 

procedures have been introduced (Hebeish and Guthrie, 1981; Garnett and Jankiewicz, 1981; Stannett and 

Williams, 1976). Grafted cellulose copolymers are developed for a wide variety of cellulose properties, 

including: resistance to microbial degradation, abrasion, ion exchange, acid resistance, adsorption, wet fastness 

and membership (Stannett and Williams, 1976; Stannett et al., 1973; Rowell and Young, 1974). The grafting 

of a monomer onto a polymer to obtain a graft copolymer leads to the creation of active centers on the boot 

polymer. These sites can then be used as polymer initiators  

The grafting technique makes it possible to modify the polymers effectively. It has many applications in 

various fields of advanced technology, such as biology, membrane synthesis and surgery. Many studies have 

been devoted to membrane synthesis (Bhattacharyya and Maldas, 1984). This grafting process has facilitated 

an increase in the water permeability of cellulose acetate membranes during the desalination processes. It 

increases ion exchange (strong and weak ions) and is applied in various separation techniques for purification, 

extraction, the treatment of industrial effluents, nuclear, pharmaceutical and food (Sun et al., 2019; Ceresa, 

1962), and a cellulose acetate membrane grafted with polystyrene (McDowall et al., 1984). The use of 

membranes prepared by grafting polystyrene onto a porous PolyVinyliDene Fluoride (PVDF) to effect the 

separation of ethanol-water mixtures by pervaporation have been reported (Simionescu and Macoveanu, 1977) . 

The graft polymers can be used to separate one or more substances from a complex mixture selectively, 

through ionic bonds or by electrostatic forces. It is therefore possible to separate species by covalent chemical 

bonds. The undesirable species supported on the polymer can be recovered by a simple reaction, for example 

by a simple variation of pH. Heavy metals are hazardous to the environment and human health and are highly 

toxic when present in industrial effluents (Hachache, 2005). Currently, their separation is the subject of very 

serious studies. 

In this study the aim was to show the importance of the chemical grafting of cellulosic materials to obtain 

a material with absorption and the improved retention of inorganic pollutants, such as chromium, copper and 

cadmium, and the influence of certain physical and chemical parameters on the adsorption capacity of our 

biomaterial.Moreover, we tested the two materials under real conditions after physicochemical characterisation 

of the oily water (HaoudBerkaoui - Hassi-messaoud-algeria). 

 

2 Materials and Methods 

2.1 Adsorbents 
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Paramèters 

 
Units 

 
Before 
treatment 

After treatment of unbleached cellulose 
 

Without 
extraction

% With 
settleable 
solids and  
extraction 

% Without 
settleable 
solids and  
extraction 

% 

Température C° 21 20      
pH  3,42 5,38  5,85  6,06  
MY Mg/l 1103.2 855,212 22,48 568.131 48,50 / / 
COD  34800 18420 47,07 5562 84,02 1370 96,06 
TOC  1299 846 34,87 194 85,07 Absence 100 
hydrocarbons  33,79 11.23 66,77 Absence 100 Absence 100 
cyanide  0.704 0,415 41,05 0,23 67,33 0.167 76,29 
Dissolve salts  937,12 170.81 81,77 83.38 91,10 54,79 97,15 
phosphates  6,52 4,32 33,74 2,46 62,27 0,956 85,34 
nitrates  67,33 32,45 51,80 16,54 75,43 10,45 84,48 
nitrites  1,03 0,765 25,73 0,357 65,33 0,212 79,41 
Turbidité NTU 721 106.9 85,17 83.8 88,38 39,4 94,53 
Conductivité ms/cm 189.5 177,2 6,49 145,1 23,43 123,8 34,67 

 

3.3 Heavy metal concentration before and after treatment of raw water  

The following tables show the heavy metal content before and after the treatment of unbleached cellulose, and 

grafted onto the raw water without treatment and after treatment, with extraction of the oily phase and without 

settleable solids. 

Table 3 and 4 show that our raw water sample was loaded with heavy metals. After the removal of the oily 

phase (hydrocarbons) and decantable suspended solids, we obtained a yield of elimination of the pollution 

indicators that was better than the efficiency of the adsorption obtained before extraction and with MES. This 

was valid for unbleached cellulose, which demonstrates the need for pigments’ preliminary treatments (oiling, 

decantation) before adsorption, which can make our adsorbents more efficient and profitable. 

 

 

 

 
Heavy 
metals 
(mg/l) 

 
Before 

treatment 

After treatment of pure cellulose 

Without 
extraction 

% 

With 
settleable 
solids and  
extraction

% 
Withoutsettleable 

solids and  
extraction 

% 

Mn 75.821 23.920 68,45 14.5 80,87 2,256 97,02 
Fe 245.80 90.99 62,98 20.834 91,52 8,564 96,52 
Zn 1.256 0.756 39,81 0.601 52,15 0,076 93,95 
Cu 1.947 0.885 54,51 0.118 93,94 0.025 98,72 
Pb 4.844 1.624 66,47 1.401 71,08 0.258 94,67 
Cd 2.776 0.785 71,72 0.383 86,20 0.102 96,33 
Cr 1.923 0.682 64,53 0.429 77,69 0.095 95,06 
Ni 0.275 0.165 40,00 0.139 49,45 0,112 59,27 

 

 

             Table 3 the heavy metals concentration before and after treatment on unbleached cellulose with and  without  
extraction and without settleable solids。

Table 2 The physicochemical characteristics of the sample before and after treatment without and with 
extraction and without MES for grafted cellulose
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From the graphical representation of each isotherm (Fig.11(a)-(c) and the Table 8), which shows the 

correlation factors, as well as the constants of each model, it is obvious that this mechanism of The retention of 

cadmium ions is represented by the Redlich-Peterson isotherm for unbleached cellulose and the Langmuir 

isotherm for grafted cellulose, which is the highest correlation factor, compared to other models. Therefore, 

according to the Redlich-Peterson and Langmuir theory, the case of a formation of more than one adsorption 

monolayer on the surface may be possible and the sites are heterogeneous, with differing binding energies. 

 

Table 8 The kinetic constants and correlation factors of differing Cd adsorption isotherms on cellulose (pure and grafted). 

Isothermal Type Constants Pure Cellulose Grafted Cellulose 

Langmuir 
 

qm (mg/g) 2,003205 2,32342 

KL (L/mg) 0,920014 0,695427 
R² 0,9789 0,9927 

Freundlich 
 

Kf (mg1-n. ln. g-1) 0,84806 0,70419 

nf 0,3071 0,4968 
R² 0,9782 0,9729 

Temkin 
 

BT (mg/g) 2,9043 3,62368 

KT (L/mg) 0,3764 0,46351 
R² 0,939 0,9609 

Elovich 
 

KE (L/mg) -0,476871 -0,83160 

qm (mg/g) -0,32723 -0,51345 
R² 0,9155 0,9639 

Dubinin-Radushkevich qmDR (mg/g) 1,30343 1,30931 

β 1,8623 1,3256 
R² 0,8024 0,9002 

Redlich-Peterson n 0,6929 0,4832 

ln (KL
n-1/qm) -0,5347 -0,01257 

R² 0,9956 0,9691 

 

The kinetic data obtained for the adsorption process were analyzed using the three most common models. 

The kinetics of cadmium was studied for unbleached cellulose at a concentration of 20 mg / l. 

The validity of the Lagergren equation was first tested by plotting ln (qe -qt) versus t. Figure11(a), shows 

that the experimental results obtained follow perfectly the linear variation given by the equation representative 

of a kinetic pseudo-first-order. The value for the constant k1 for the cellulose is shown in Table 8. 

From the equation representative of the pseudo-second order kinetics and linear form, the constant k2 

speed can be calculated by graphically plotting qt / t vs. t. Fig. 11(b) shows that the Lagergren equation is 

applicable in the case of cadmium retention for both unbleached and grafted cellulose. 

The application of the intra-particle diffusion equation to the experimental data, plotting qt versus t0.5, 

suggests the applicability of the intrafield scattering model governing the adsorption kinetics. Thus, the curves 

presented below show the kinetics of intra-particle diffusion for unbleached and grafted cellulose. From the 

curves off Fig. 11(c), it is noted that there is continued linearity throughout the process. 

For the diffuse layer model, the slope of the linear part of the curve was calculated and represents the 

kinetic constant kint. 
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4 Conclusion  

The aim of this work was to confer new properties on a cellulosic fibrous material by means of the chemical 

grafting of acrylic functions for the treatment of effluents containing inorganic pollutants (heavy metals) as 

part of a process research approach to potentially applicable to wastewater treatment. This work was also an 

opportunity to understand the method of fixing the inorganic contaminants of these materials in aqueous 

solutions.  

To confirm the new properties of the grafted material, having a high absorbency, a physicochemical 

characterization was achieved and the following observations can be made: 

The spectrum of the Fourier transformed by infrared rays confirms the appearance of new bands 

characteristic of copolymerization. 

When observed under a scanning electron microscope, the grafted fibres showed a modification of their 

morphology. Grafting on cellulose inherently reduces the fibre structure, which favors the growth of less 

structured amorphous areas for enhanced absorption. 

The results showed that the retention of metal ions was extremely rapid, reaching equilibrium after 60 

minutes for copper, and 120 to 150 minutes for cadmium and chrome on cellulose (unbleached and grafted). 

The pH effect study demonstrated that the removal rate of heavy metals (Cr6+, Cu2+, and Cd2+) peaked at 

pH 8-10 for unbleached cellulose. However, it gave a better performance and better retention in acidic areas 

(5-7) of grafted cellulose. The effect of the initial concentration, as well as the solid / liquid ratio for the dye, 

was also examined. 

The results of the kinetic study for all the heavy metals demonstrated that the retention was extremely fast. 

In fact, it was almost instantaneous. Linear regressions have shown that kinetics is controlled by the pseudo-

second-order model, so the chrome is controlled by the pseudo-first-order model. This was clearly confirmed 

by the values of the correlation factors corresponding to each model.  

The adsorption isotherms for cadmium and chromium concentrations chosen for initial experimental data 

were interpreted by the Redlich-Peterson and Langmuir models for unbleached cellulose for the grafted 

cellulose. For copper, the Freundlich model best described the data for adsorption isotherms on unbleached 

cellulose and the Redlich-Peterson and Langmuir models for retention of copper for the grafted cellulose. 

This work is interesting because it targets two objectives, the first is environmental, because it emerges 

very toxic heavy metals, using the cellulose from the waste of the cotton factories, and the second is economic, 

because the cost of the operation is low. 

 

 Constants Pure cellulose Grafted  cellulose 

Kinetics of the first order 
 

K1 (min-1) 0,0468 0,0296 

Qe (mg/g) 3,57405 3,7727 
R² 0,9947 0,9673 

Kinetics of the 2nd order 
 

K2 (g.mg- 1.min-1) 0,01156 0,01149 

qe (mg/g) 3,7555 3,145027 
R² 0,9992 0,9989 

Intra particle diffusion 
kint (mg/g.min0.5) 0,1508 0,2087 

R² 0,9148 09788 

Table 9 Parameters of the kinetic models studied for cadmium. 
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