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Abstract 

Response surface methodology was applied to optimize the removal of various pollutants by three newly 

isolated macroalgae strains from Miankaleh wetland. These strains were selected from 11 different isolates 

(including 8 micro and 3 macroalgal strains) based on their growth kinetic parameters. The effect of variables 

such as light intensity, CO2 concentration and concentration of wastewater on the biosorption of nitrate, nitrite, 

phosphate as well as the rate of CO2 sequestration were investigated using a Central Composite Design (CCD) 

method. Multiple regression analysis and analysis of variance (ANOVA) showed that all three species of algae 

were able to significantly remove the nutrient elements and sequester CO2. A maximum nitrate removal of 

91%, nitrite removal of 92%, phosphate removal of 95% and CO2 sequestration of 30-60% was obtained using 

the biosorption kinetics under optimum conditions. Our results clearly confirm the ability of the studied strains 

in bioremediation of environmental pollutants. Moreover, the dynamics of phytoplankton populations in the 

Miankaleh wetland were surveyed using remote sensing information. The findings support the hypothesis that 

the high concentration of algal pigment in the wetland is correlated to the ability of the studied strains in 

bioremediation of environmental pollutants; a direct correlation exists between the prone algal biomass and the 

potential of carbon capture in the aquatic ecosystems. 
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1 Introduction 

 

 

 

1 Introduction 

"Threats to natural resources" is a broad topic having national and global dimensions. In the case of threats that 

cut across international boundaries, increasing greenhouse gase (GHGs) emissions are strongly correlated with 

global warming in recent decades (Zhang and Liu, 2012). This phenomenon has serious environmental 
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consequences e.g. constantly-increasing temperature in the atmosphere and hydrosphere (Drake, 2014). CO2 is 

one of the most important GHGs. Anthropogenic releases of CO2 could imposes catastrophic changes in 

marine systems: increases in acidity, variation in ocean temperatures and related circulation changes and storm 

activities are among the effective factors which in turn determine the survival of organisms in aquatic 

environments (Podong, 2014; Sundar et al., 2014; Shabani et al., 2016; Asadian et al., 2018). An insatiable 

global appetite for energy is fed by increasing fossil fuel consumption, advancing of various technologies and 

instruments leading to increased CO2 and halocarbons emissions, changes in land use and deforestation, 

disposal of toxic hospital and agricultural wastewater, etc. are some examples of human activities leading to 

global change (Cook et al., 2016). Therefore, many efforts have been made to reach a comprehensive plan of 

action to reduce GHGs and one of the most important methods is the biological fixation of the GHGs. 

      Photoautotrophic algal species take up CO2 (directly, or indirectly as bicarbonate) as a carbon source to 

support photosynthetic activity and lead to biomass production (Lee, 2016). Numerous studies have discussed 

the positive effects of accumulated concentrations of CO2 in promoting biomass production during algal 

cultivation. For example, it was previously reported that a concentration of 2% CO2 led to an increase in 

growth of Botryococcus braunii (Ranga et al., 2007) and a similar response was observed in Neochloris 

oleoabundans supplemented by 5% CO2 (Gouveia et al., 2009). It worth mentioning that any increase in algae 

biomass production can ultimately lead to increased lipid production and ultimately can result in an 

economically-feasible production of biofuels using algal feedstock (Sayadi et al., 2011; Talebi et al., 2013). 

In the national dimension, natural resources such as freshwater reservoirs are directly threatened by human 

activities including intensive agricultural activities, urban/domestic development, industrialization and 

unplanned engineering infrastructures (Chiu et al., 2015). Large unmechanized procedures performed by 

farmers in the paddy fields of north Iran results in drainage systems heavily contaminated by a variety of 

hazardous compounds such as agricultural pesticides and chemical fertilizers, together known as agricultural 

wastewater (Rashed, 2013). Treatment of these compounds using algal cultivation is a promising biological 

method of bioremediation. Wastewaters contain organic and inorganic compounds along with nutrients such as 

nitrates, nitrites and phosphates that could be taken up by the algal cells during the cells' growth phase and 

increase the biomass production in algae cultivation systems. In addition, increased utilization of nitrates and 

phosphates can improve photosynthetic rates which translates into higher oxygen concentrations in wastewater 

systems (Delgadillo-Mirquez et al., 2016); the latter could lead to improved aerobic bacterial activity and 

better refinement of compounds in a coupled wastewater treatment strategy (Sutherland et al., 2015). On the 

other hand, nutrients in the wastewater are transformed to lipids and proteins in algal cells, which could be 

processed into different value-added products such as biofuels, forage for livestock or even health food for 

humans (Sayadi et al., 2011; Salama et al., 2017). Numerous studies have surveyed the biosorption potential of 

a range of species of green algae (Zeraatkar et al., 2016). Over five decades of research on algal-based 

wastewater treatment has provided valuable knowledge on the laboratory to industrial scale for pollution 

remediation. Biosorption and/or neutralization of the toxins have been repeatedly confirmed the high 

bioremediation potential of low-cost micro and macroalgae cultivation systems (Zeraatkar et al., 2016; Delrue 

et al., 2016).  

On the other hand, the increasing availability of satellite ocean color data presents an opportunity to 

investigate climate change, ocean primary productivity, pollution of the environment and the power of 

phytoplankton in utilization of atmospheric CO2 (Huot et al., 2007). The dynamic assessment and spatio-

temporal variations of algal populations in wetlands using satellite imagery was developed at the end of the 

21st century as a remote sensing solution providing an efficient way to produce an awareness about the 

biochemical, physical and biological processes in aquatic systems, at low cost (Van de Poll et al., 2013).  
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(1) Biomass productivity (BP) or the amount of produced dry biomass (g l−1 day−1), was measured 

gravimetrically as follow: 

                BP= ((dWi-dW0))/ (ti-t0)                  Eq. (1) 

where dWi: dry biomass on the ith day; dW0: initial dry biomass; ti: i
th day; t0: initial time 

(2) Total lipid content (LC) as percentage of the total lipid per 100 /gr dried biomass (% dwt). LC was 

determined according to method described by Talebi et al. (2013) with some modification; 50 mg of dried 

algal sample was vortexed with 3 ml of chloroform/methanol (1:2) for 10 minute followed by centrifugation at 

4000 rpm for 15 minutes. The supernatant was collected and sediments in the tube is mixed with 2 ml of 

chloroform/methanol (1:1) for three times and centrifuged similar to the previous step. The supernatant was 

collected and filtered through Whatman filter paper to remove impurities. The chloroform and alcoholic 

residues were evaporated by keeping the sample at (65°C) in hot air oven. Finally, weighed sediments were 

used to measure the total lipid content.  

(3) Lipid productivity (LP) was also measured with the following equation: 

LP= (LC × BP × 1000)/ 100      Eq. (2) 

where LC is lipid content and BP is biomass productivity.    

2.3 Morphological identification of the isolated strains  

To identify the algal strains, morphological characteristics were studied. The morphology of single cells was 

studied microscopically (NikonEclipse FN1). Characters such as cell size, cell shape, length and width of 

vegetative cells, the presence or absence as well as shape of flagella, filaments and gas vesicles in addition to 

cells’ potential aggregation into colonies were thoroughly recorded. Identification of algal strains was done 

using the descriptions provided in the manuals of Sohrabipour and Rabii (1999), and Sterrer (1986). The 

morphological characteristics of macroalgae including cell size, thallus color, height and cell shape were 

considered to determine the taxonomy of the studied strains. 

2.4 Optimizations of culture condition and bioremediation by RSM 

In this study, three species selected from the  isolates were aseptically grown in 3N-BBM culture medium and 

different growth conditions, such as different concentrations of CO2 (380, 5190 and 10000 ppm), different 

light intensity (113, 170 and 225 µmol photon m-2 s-1) and wastewater (100% culture media, 100% wastewater 

and 1:1 dilution of medium and wastewater). 5 liter Erlenmeyer flasks containing one liter of the medium were 

used for algae cultivation. White LED lamps provided different light intensities. Light intensity was evaluated 

with a lux meter every day. Illumination regime of 16 h light and 8 h dark was used. Temperature (25 °C) and 

pH (8.5) were constant in all cultures. Aeration was carried out with CO2-containing tanks. The concentration 

of CO2 was measured by titration method; CO2 was bubbled 2-3 times every day for 20 minutes and after 

enrichment of the culture medium at the desired concentration the aeration gas was stopped. The pH was 

measured before and after the CO2 injection, and the pH was adjusted to 8.5 using appropriate buffers. 

Three levels of the variables in coded units are given in Table 1. RSM was used to evaluate the influencing 

factors and also to optimize the culture condition for maximum biorefinery capacity. Biosorption of various 

pollutants such as nitrate, nitrite, phosphate, as well as rate of CO2 sequestration was concurrently surveyed. 

Central Composite Design (CCD) method is used to reduce execution cost and time during the experiment. 

Using Design-Expert software version 7.0 (Stat-Ease Inc., Minneapolis, USA) an experimental plan containing 

30 experiments was designed (Table 2). Data processing was done to obtain the effects and surfaces of the 

responses. The software was used for regression and graphical analysis of the obtained data. The adequacy of 

the RSM was evaluated by calculation of the determination coefficient (R2). Finally, the optimum condition for 

the highest bioremediation was calculated. 
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Table 1 Independent variables and encoded levels in the experimental design. 

Factors unit Range and levels 

-1 0 1 
CO2 ppm 380 5190 10000 
Light intensity # 113 170 225 
Wastewater - Culture media 1:1 Wastewater 
Macroalgae - 1 2 3 

# µmol photon m-2 s-1 

 

Table 2 Experimental design and the number of runs with Design Expert Software. 

Run Medium CO2 

(ppm) 
Light intensity(µmol 
photon m-2 s-1) 

Algal 
strains 

Biomass (mg dw 
/ L day) 

1 3N-BBM 10000 113 1 303.33 
2 Waste water 380 225 1 370 
3 3N-BBM 380 225 1 326.66 
4 3N-BBM 10000 225 1 316.66 
5 Waste water 10000 225 1 320 
6 Waste water 10000 113 1 300 
7 3N-BBM 380 113 1 283.33 
8 1:1 5190 170 1 496.66 
9 Waste water 5190 225 1 500 
10 1:1 5190 170 2 526.66 
11 1:1 5190 170 2 441.17 
12 1:1 380 170 2 473.33 
13 1:1 5190 113 2 408.82 
14 Waste water 10000 225 2 525 
15 1:1 5190 170 2 419.44 
16 1:1 5190 170 2 369.04 
17 Waste water 5190 170 2 370 
18 1:1 5190 170 2 405.26 
19 1:1 5190 170 2 419.44 
20 3N-BBM 5190 170 2 394.73 
21 1:1 5190 225 2 442.85 
22 1:1 5190 170 3 384.37 
23 Waste water 10000 113 3 270 
24 3N-BBM 10000 113 3 276.66 
25 Waste water 380 113 3 284.37 
26 3N-BBM 10000 225 3 293.33 
27 Waste water 380 225 3 309.37 
28 Waste water 10000 225 3 270.58 
29 3N-BBM 380 113 3 263.33 
30 3N-BBM 380 225 3 237.5 

 

2.5 Analytical methods 

In this study, the following methods were used to measure the concentration of pollutants remaining in the 

growth medium after harvesting of the algal cells. The concentration of nitrate ion was measured according to 

the method described by Kalimuthu et al. (2015) and Chandra (2002). In brief, the procedure is as follows: 3 

ml of culture medium was centrifuged for 15 min at 5000 rpm. The supernatant was used for the analysis. 

Optical density was measured using a spectrophotometer (MODEL UV 1800, Shimadzu company) at 410 nm 
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and the nitrate concentration was determined using a calibration curve. This curve was drawn up by preparing 

a standard nitrate solution (potassium nitrate) at concentrations of 0 to 10 mg / L. The concentration of nitrate 

ion (mg / l) in the medium was determined from the standard curve. 

Determination of nitrite ion was carried out by the method reported by Wang et al (1998). The description 

of this method is as follows: 3 ml of culture medium was centrifuged for 15 min at 5000 rpm. 2.5 ml of the 

supernatant was diluted with ammonium chloride to achieve final volume of 10 ml. 0.2 ml of sulfanilamide 

(1%) was added to 5 ml of this solution and after 5 minutes, 0.2 ml of N-1- naphthylethylenediamine (0.02 M) 

was added. Formation of the purple color was measured spectroscopically at 543 nm. The nitrite concentration 

was determined using a calibration curve. The calibration curve was determined using nine different levels of 

standard nitrite solution from 0.01 to 0.4 mg / l. 

To determine the residual phosphate ion in the medium, 4 ml of ammonium molybdate (0.05 M) was 

dissolved in 100 ml of the supernatant and 0.5 ml of stannous chloride was added to the solution. After 10 

minutes of incubation, absorption at 690 nm was measured by the spectrophotometer. The residual phosphate 

ion concentration was determined using a calibration curve using nine different concentration of standard 

phosphate solution from 0.1 to 0.9 mg / l. Standard phosphate solution was prepared by dissolving 219.5 mg 

KH2PO4 in 1liter of distilled water that contains 50 mg/L of phosphate (Tanada et al., 2003). 

CO2 sequestration was determined using titration method according to Black et al (1954) and Fidel (2015). 

A few drops of phenolphthalein were added to 10 ml of supernatant and titrated with NaOH (0.02 M) until the 

color of the solution change to pink and the alkalinity reached to pH=8.3. Finally, the volume of consumed 

sodium hydroxide was recorded. The concentration of dissolved CO2 in the medium was determined using Eq. 

3. 

CO2 (mg/ml) = (A × N × 44000)/ (The initial volume of the sample)                       Eq. (3) 

where A represents the volume of consumed NaOH (ml) and N represents the normality of sodium hydroxide 

solution. 

2.6 Remote sensing of phytoplankton blooms in the Miankaleh wetland 

Studies on the dynamics of phytoplankton population in the Miankaleh wetland (southeast of the Caspian Sea) 

were performed using remote sensing information. The satellite imagery obtained from worldview tool 

(https://worldview.earthdata.nasa.gov) captured with the MODIS sensor on the Terra and Aqua satellites 

between 2010 and 2018 in the summer. All the images were evaluated in these years and the average of 

chlorophyll a concentration were measured to estimate the potential of the CO2 bio-sequestration in the region. 

The sensor and imagery resolution is 1 km, and the temporal resolution is daily. This sensor can be used to 

measure chlorophyll a concentration in the studied area (Fu et al., 2018). 

 

3 Results and Discussion  

3.1 Selection of suitable algal strains 

The results of BP, LC and LP for all 11 strains are presented in Table 3. To minimize the effect of incubation 

period and condition on biomass as well as lipid production, all cultures were inoculated in 3N-BBM medium 

and harvested after reaching the stationary phase. The highest BP was observed in isolate number 9. Also, the 

highest levels of LC and LP were observed in isolate No 10. Based on the data presented in Table 3, three 

macroalgal strains; number 9, 10 and 11, were selected for further investigations. The growth parameters LP, 

LC and BP were considered as the most important criteria for selection of suitable strains. 

During the present study, we used BP, LC and LP as the important criteria for screening productive algal 

strains. These characteristics have been repeatedly used in published studies; for example Hempel et al. (2012) 

have identified BP as the main influencing factor for the capability of the algal feedstock for further 
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applications. BP and LP were introduced by Talebi et al. (2013) as adequate criteria to estimate the potential of 

different microalgal isolates for industrial applications. Since they calculated a strong correlation (R2 = 0.93) 

between BP and LP, the productive strains in the present study were selected based on the highest BP (Table 

3). However, other influencing parameters such as adaptability to environmental conditions, ease of cultivation 

and harvesting, release of possible toxic metabolites etc., should also be considered for the final screening of 

potential algal strains for biorefinery approaches. 

 

Table 3 Growth kinetic parameters measured for 11 isolates algal strains grown in 3N-BBM culture medium. 

Isolates Dry weight 
(mg l-1) 

Biomass Productivity 
(mg l-1 day-1) 

Lipid content 
(%) 

lipid productivity 
(mg l-1 day-1) 

1 183 6.10 23 1.403 
2 176 5.86 17 0.996 
3 185 6.16 10 0.616 
4 164 5.46 20 1.092 
5 193 6.43 25 1.607 
6 187 6.23 22 1.370 
7 170 5.66 15 0.849 
8 191 6.36 22 1.399 
9 211 7.03 34 2.390 
10 205 6.83 39 2.663 
11 200 6.66 31 2.064 

 

3.2 Phenotypic analysis of selected strains 

Morphological characteristics of the three top biomass producer strains were studied using microscopic 

analysis. Three macroalgae strains namely Chaetomorpha antennina, Ulva intestinalis and Bryopsis pennata, 

were identified (Fig. 2) based on their morphological key characters. For example, C. antennina (strain number 

9), has cylindrical cells and non-branching filaments with a large number of chloroplasts. This genus has 

parietal chloroplasts and multiple pyrenoids, also, the filaments are arranged in a row with a smooth wall. 

However, straight and rigid filaments in company with rhizoids that firmly attach the algae to the substrates, 

form a typical development of Chaetomorpha spp. in culture. Rhizoids are also very compact (Deng et al., 

2013). The characteristics of U. intestinalis (strain number 10) were rounded rectangles in short longitudinal 

rows. Studies showed that Ulva spp. have thalli that are light green. The shape of cells in this genus is 

regular/irregular round. U. intestinalisis usually non-branching and the presence of one pyrenoid in each cell 

and the chloroplasts at the apical end are also features of this species (Kong et al., 2011). B. pennata (strain 

number 11), has a central axis with lateral branches around it. The tip of the thallus is rounded in the main and 

lateral branches. This species has been previously described by its massive and branchy thallus in tuft-like, 

dark green color. Moreover, it has a single utricle cell in a coenocytic structure (Ciancia et al., 2012). 

Morphological features such as size and situation of the cells, development of uniseriate/biseriate filaments 

and unilateral/bilateral branching were considered for the identification. Moreover, details of ecological 

characterization such as distribution and environment, physiological properties and nutrient requirements 

match the 3 selected algae to the close description. Comprehensive evaluation of all the mentioned criteria and 

comparative assessment with previous studies has been recently employed by the authors (Kabirnataj et al., 

2018).  

3.3 Optimization of medium components to maximize the biomass production 

According to the Table 1, three operational parameters were varied in three levels to optimize the BP as well as 

the biorefinery capacity of the studied strains. Three algal species were analyzed after reaching the end of the 
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Bioremediation of environmental pollutants was considered as one of the most important goals of this 

study. To achieve the highest performance, it is essential to optimize the medium components to maximize the 

biomass production using three operational parameters (light intensity, CO2 concentration and concentration of 

available nutrient). One of the important parameters in the economically-feasible production of any algal 

strains is providing a cheap and at the same time, rich, source of required nutrients. This factor especially in 

large-scale cultivation, impose strong influences on the productivity and environmental aspects, so it is 

important to understand how this response can be optimized. This topic is discussed in numerous previously 

published studies in the field; Singh and Das (2014) showed that utilizing rich sewage sources (urban, animal 

and agriculture) is useful for supplying the nutrients (nitrogen and phosphorus) required for algae cultivation. 

Such an approach helps to reduce the final costs of algae biomass production and also leads to the elimination 

of environmental pollutants. In another study, Nelson et al. (2007) showed that the growth of algae in 

agricultural wastewater helps to improve their growth due to the optimal absorption of nutrients. Also, these 

algae are suitable for the production of biofuels because, in addition to their high growth rates, their production 

costs are also reduced. 

The synergistic effect of mixed culture medium in the present study was in line with already published 

reports; Jiang et al. (2011) observed that a 1:1 ratio of municipal wastewater and seawater with f/2 medium 

could increase the biomass concentration of Nannochloropsis sp. up to 31% (212 mg L-1) compared to a 

control (161 mg L-1). Also, the relationship between parameters is very important. The correlation of these 

parameters on growth stimulation of algal cells was investigated by Mejia Rendon (2014). This study showed 

that increasing CO2 concentration and white light treatment, increased biomass production in algae. It was also 

reported in a study done by Rooijakkers (2016), that increasing light intensity up to 200 µmol photon m-2 s-1 

could increase photosynthesis activity and biomass production in aquatic freshwater plants. In general, algae 

are capable of producing high biomass under normal and high concentrations of CO2 (Singh and Singh, 2014). 

It was reported that the addition of CO2 in intensive culture of three green algal species, Chaetomorpha linum, 

Cladophora coelothrix and Cladopha rapatentiramea enhance the productivity of targeted algal strains and 

this was then followed by enhanced adsorption of nitrogenous compounds from the culture media (De Paula 

Silva et al., 2013).  

The presented model for optimization of medium components to maximize the biomass production also 

introduces the influencing factors on biomass production. Factors such as CO2 concentration, light intensity 

and algal strains positively affect the final dry weight. Based on the strong correlation between BP and LP 

(Griffiths and Harrison, 2009), it is expected that the physico-chemical growth properties which could result 

inthe higher BP would enhance the potential of biorefinery capacity as well as biofuel production.  

3.4 Optimization of culture condition to increase the biorefinery capacity 

3.4.1 Nitrate and Nitrite removal 

Table 5 summarizes the potential of algal cultivation to carry out bioremoval of environmental pollutants in 

presence of different treatments (three operational parameters in three levels). The results showed that cultures 

grown at 5190 ppm of CO2 were most effective in removing nitrate (Fig. 3a). Also, strain number 2 (C. 

antennina) showed a higher capacity for nitrate removal compared to other strains (Fig. 3a). 

Also, the results showed that increasing light intensity to 225 µmol photon m-2s-1 in interaction with other 

treatments played an important role in improving nitrate removal (Fig. 3b). In summary, the maximum nitrate 

removal is seen at around 5190 ppm CO2, and 170 µmol photon m-2 s-1 light intensity. 

The final equation in terms of actual factors was: 

Nitrate removal =+20.51209 -0.32637× medium +6.85194E-003× CO2 +2.17014E- 003× light intensity 

+28.43831 × algae -6.36256E-006×medium ×CO2 +1.85039E- 006×medium×light intensity -
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The Model F-value is equal to 9.99, which indicates that the used model is significant (0.01% chance for 

the noise). The Lack of Fit F-value of 6.27 implies the Lack of Fit is significant. Other statistical information is 

included: Standard deviation = 7.12, R2 = 0.9031, mean = 69.92, adjusted R2 = 0.8127, coefficient of variation % 

= 10.18. 

 

 

Table 5 Percentage of pollutants removal and CO2 fixation in different treatments according to the Table 2. 

Run Nitrate 
(%) 

Nitrite 
(%) 

Phosphate 
(%) 

CO2 (%) 

1 62.7 52.63 69.05 19.48 
2 69.63 45.16 75.43 28.21 
3 67.26 78.94 74.51 18.94 
4 64.62 63.15 75.68 23.79 
5 59.5 51.61 74.26 20.53 
6 53.68 71.61 89.47 18.95 
7 59.43 52.63 56.95 14.31 
8 69.93 85 93.92 30.14 
9 82.36 69.35 70.76 47.09 
10 75.42 86.42 90.63 29.97 
11 69.39 92.14 92.15 33.19 
12 66.61 80 78.73 25.89 
13 68.23 74.28 75.94 29.12 
14 67.39 52.25 95.41 60.84 
15 72.41 85 91.1 34.89 
16 68.93 92.14 91.1 33.02 
17 91.41 82.9 76.02 37.6 
18 72.64 92.14 91.1 33.53 
19 67.92 92.14 91.1 29.97 
20 75.49 89.47 78.93 38.28 
21 79.59 89.28 71.89 51.33 
22 66.46 69.28 75.69 28.61 
23 51.99 54.83 71.34 14.11 
24 58.86 57.89 63.06 12.7 
25 54.29 61.29 70.17 18.94 
26 60.42 47.36 67.1 12 
27 63.34 58.06 64.32 18.94 
28 62.76 54.83 53.8 21.06 
29 56.97 42.1 50.06 12 
30 67.3 73.68 71.91 16.63 
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The rate of CO2 biofixation is influenced by different parameters including light intensity, inoculum type, 

concentration of available nutrients. Several studies showed the role of nutrients in CO2 fixation. Hessen et al 

(2004) determined that reducing nutrients leads to reduction in CO2 fixation. In another study, Zhao and Su 

(2014) referred to the role of nutrients and light intensity in CO2 fixation. Among the three macroalgae species, 

C.antennina sequestrates more CO2 (Fig. 6b). In various studies it has been observed that, light intensity, cell 

density and light penetration directly influence the photosynthesis, biomass production and CO2 sequestration 

(Zhao and Su, 2014; Moreira and Pires, 2016). Jacob-Lopes et al (2008) evaluated the interaction of light 

intensity and CO2 concentrations for CO2 sequestration. The results showed that optimization of light intensity 

and CO2 concentration are effective in increasing CO2 sequestration compared to initial inoculum. Various 

studies have evaluated the effects of light intensity and the supply of adequate nutrients. Providing proper 

conditions could lead to increase photosynthesis, resultant enhanced algal biomass productivity as well as 

more biofuel production (Kumar et al., 2010; Mondal et al., 2017).  

In our study, a significant positive correlation between light intensity as well as wastewater concentration 

for promoted CO2 sequestration was observed. Similar trends have been repeatedly published in the literature; 

for example, in a study by Guo et al. (2018), interaction of algae grown in Shanghai's plant wastewater and 

different light intensities was evaluated. The results showed that under light intensity of 250 µmol m-2 s-1 the 

highest percentage of carbon removal (63%) was observed. In another study the activity of algae grown in 

wastewater under different light conditions (50 to 80 µmol m-2 s-1) along with variations in the pH of the 

culture medium (8 to 9) was evaluated. The results showed that under light intensity 80 µmol m-2 s-1 and media 

containing wastewater, algae are able to remove CO2 by up to 50% (Bhakta et al., 2015). 

3.5 Spatiotemporal variations and chl-a concentration  

The spatiotemporal variability of phytoplankton biomass in the studied area was investigated by satellite-

derived chlorophyll a (Chla-sat) data. The result showed that chla-sat concentration varied from 12 to 17 mg / 

m3 from 2010 to 2018. The observed variability could be explained by factors influencing the growth of 

phytoplankton namely the emission of the gas and nutrients contamination into the ecosystem; the elevated 

CO2 dissolution in seawater could increase carbon biofixation, result in enhanced growth of algal population 

(Fig. 7). In the area of the Miankaleh wetland, a fossil fuel power plant, Neka power plant, is located and 

provides more than 6% of the total electricity generation in Iran. However, due to the use of mazut, a low 

quality fuel oil, this fossil fuel power plant releases a lot of environmental gas pollution namely CO2 into the 

Miankaleh wetland which negatively affects the sustainability of the ecosystem. 

It was also observed that chla concentration is higher in summer. The reason might be the higher supply of 

the nutrients thorough agricultural wastewaters into the Miankale Wetland. Moreover, higher temperature and 

elevated light intensity could help to increase the biomass of algal communities during the warm season. 

According to the predicted concentration of chla obtained from satellite imagary (Chla-Sat), the amount of 

fresh phytoplanktonic biomass in the total area of the water section of Miankaleh wetland (45000 hectare, 1 

meter depth), was estimated approximately76500 ton wet biomass. If the sequestration rate of 1.83 grams of 

CO2 per 1gram of algal biomass was adopted (Rosenberg et al., 2011), 140 kilotons CO2 could be sequestrated 

in this wetland during the phytoplanktonic photosynthesis in a growth season. Although, this level of bio-

sequestration might be different depending on the season, richness of the wetland by nutrients and provided 

CO2 in the atmosphere. All these parameters in a correlation with type of algal population directly influence 

the final capacity of CO2 bio-sequestration. 
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to over 30 times increase in the biomass of algae. In an attempt to mitigate global ocean acidification, as a 

consequence of rising atmospheric CO2, Mongin et al. (2016) successfully surveyed the potential of a reef-

scale cultivation of multicellular algae in carbon removal in the Heron Island reef. The issue of CO2 mitigation 

coupled with commercial seaweed production in Asian-Pacific region has been the topic of numerous 

investigations. A potential of 2.87 million tons CO2 sequestration in algae farms of Asian Pacific countries was 

reported by Sondak et al. (2017). Australia's largest coal-fired power stations use piped pre-emission 

smokestacks to convert CO2 into hydrocarbons within the algal ponds. CO2 and other greenhouse gases, such 

as N2O, from local emitters are sourced at the production site and no additional emissions are released by 

transportation (Rhodes, 2012). 

To date, various studies have been carried out on the monitoring of chla content using MODIS-based 

satellite imagery in the Caspian Sea (Moradi, 2014; Salman et al., 2013; Jamalomidi, 2013). In a study done by 

Salman et al (2013), it was shown that the chla concentration in the southern part of the Caspian Sea was 1.4 to 

4.8 mg / m3 in October 2008. Naghdi et al. (2018) showed that there is a significant relationship between 

cyanobacteria and chlorophyll a in the southern Caspian Sea using MODIS satellite imagery. Bianchi et al 

(2013) expressed that increasing biomass concentration in an environment could lead to an increase in carbon 

fixation. In general, the analysis of satellite images associated with Chla content (specifically in the Miankaleh 

wetland in 9 years) provides an overview to evaluate the spatial-temporal variations of phytoplankton and algal 

biomass productivity and resultant carbon biofixation.  

We estimate the spatiotemporal and biomass variations in the algal population in the studied area. 

According with the recent activities of the Neka power plant in the vicinity of the Miankale Wetland, there is a 

high probability of increasing greenhouse gases concentration such as CO2 in the wetland. This can be a factor 

in increasing biomass during the period of study. Neka power plant generates 2214 megawatt electricity power. 

However, due to the burning of mazut, this fossil fuel power plant releases a lot of environmental pollution in 

the Miankaleh wetland. These environmental pollutants can help to improve the biomass of the predominant 

algae in the Miankaleh Wetland through the supply of carbon and nutrients to stimulate the growth of algal 

communities. On the other hand, by exploring new facilities, performing new plan of power generation, 

applying worldwide strategies and developing renewable fuels, they are to diminish the environmental effects 

of power generation and lead to a reduction of emission of CO2 from 2017. The new strategy of Iran’s power 

sector planned to enhance the contribution of natural gas as an alternative fuel. It was led to a reduction of 

heavier fuels burning in the fossil fuel power plants. Moreover, this strategy aims to increase the contribution 

of combined cycle power plants to increase thermal efficiency and diminish the external impact of emissions. 

By performing this plan in Iran’s power sector, the average emissions of CO2 will reduce by 20%.  

Reliable monitoring of coastal waters is not possible without using remote sensing data. It is obvious that 

the infrequent monitoring using routine measurement tools cannot provide the spatial and temporal coverage 

needed for monitoring such dynamic environments like coastal waters. As Gholamalifard et al. (2013) used 

specific optical properties of the optically active substances in developing regional algorithms for retrieval of 

water characteristics in the southern Caspian Sea, herein, we analyzed the satellite images associated with Chla 

content and provide an overview for evaluation of the algal biomass. Our hypothesis was based on 2 facts: 1) 

Given adequate sunlight and nutrients, phytoplankton populations can swell into blooms large enough to be 

visible from space 2) increasing biomass concentration could lead to an increase in carbon fixation in an 

environment. So, the findings support the hypothesis that the high concentration of algal pigment in the 

wetland is correlated with the ability of the studied strains in bioremediation of environmental pollutants; Our 

results in the laboratory confirmed that the studied algal strains could successfully sequestrate CO2. 
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As shown in Section 3.4.3, all three predominant macroalgae in the Miankaleh wetland (especially C. 

antennina) showed the ability to sequestrate CO2 with an appropriate rate in laboratory conditions. Therefore, 

the existence of these algal species in the Miankaleh wetland could play an important role in reducing 

concentrations of CO2 and other greenhouse gases, preventing further contamination as well as global warming 

(Venkatesalu et al., 2012). This can be an operational process to help decisions made at the Paris climate 

conference 2015. So, cultivation of macroalgae to sequestrate carbon, conversion of biomass to biofuels and 

burning natural gases in the power plants are among affordable program to reduce greenhouse gas emissions in 

the Miankaleh wetland. 

Even the critics that express concern about scale up of experimental achievements and the limited market 

of algae production, assessing the current potential, believe that very good perspectives exist either to produce 

biofuels or other valuable products such as pharmaceutical or cosmetics in the future (Patricio et al., 2017; 

Ibrahim et al., 2016). This potential application of algal strains as solar biofactories of valuable chemicals was 

recently reviewed (Norena-Caro and Benton, 2018). In summary, the reviewed results highlight that only a 

kilometer-scale cultivation of algal strains can positively influence the global carbon cycle, depending on 

future global carbon emissions. Algal feedstock can act as a newly-emerged carbon donor to other ecosystems 

and by this means significantly improve the global carbon sequestration. 

 

4 Conclusions 

Surplus usage of nutrients in agricultural wastewater could lead to dangerous disruption to aquatic ecosystems 

such as algal blooms. In this study, the effects of light intensity, CO2 concentration and different loadings of 

agricultural wastewater on the biosorption capacity of three algal strains were investigated. The local isolates 

usually represent enough adaptation to abiotic stresses and also show good ability for bioremoval of pollutants 

and CO2. Our study showed that the interactions between high concentration of CO2 (5190 up) and light 

intensity (177 µmol photon m-2 s-1 up) could increase the BP, pollutants removal and CO2 sequestration. Also, 

the results showed that C. antenninais a successful strain in bioremediation and CO2 biofixation in comparison 

to other studied stains. In the present study, algal strains were able to absorb 70 to 90% of nitrate, nitrite and 

phosphate. Therefore, the cultivation of algae in agricultural wastewater not only absorb nutrients and increase 

the biomass productivity, but also help to absorb greenhouse gases (such as CO2) and reduce the effects of 

climate changes, more sustainable than any other physico-chemical approaches. According to the obtained 

results, studied macroalgal strains were able to sequestrate 30% to 60% of the provided CO2. Moreover, the 

produced algal biomass can be used in biofuel production and as biofertilizer by recycling nitrates, nitrites and 

phosphate absorbed by algal strains. The results obtained provide an overview of the satellite evolution of the 

temporal variability of chla and the ability of the algal strain in biosorption of environmental pollutants. This 

approach could be sustainably served as an indicators of biochemical, physical and biological processes in the 

aquatic systems. 
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