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Abstract  

How much complex is a human event like a soccer match? How much difficult is to predict its result? Can we 

disentangle the complexity behind such event? In this work, I state that the use of multiagent systems to 

simulate soccer events is improper: too many possible space-time configurations are possible, and the resulting 

complexity is unimaginable. A proper way to simulate such complex event is to turn its complexity into its 

irreducible essence. When such irreducible essence is tamed, stochasticity and iteration can then be added. I 

describe here in outline a math algorithm, named Soccer-Decoder and implemented through the software 

Soccer-Lab, that is based on game theory and differential calculus and that exactly does this: 1) it turns the 

complexity of a soccer match into its irreducible and structural essence, 2) it simulates soccer matches by 

adding stochasticity and iteration to such structural essence. An illustrative example is given. The philosophy 

on the underside of Soccer-Decoder is that even very complex real world events, when transformed into their 

irreducible essence, can be understood and predicted. 
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1 Introduction 

In a soccer match, there are 2 teams <T1, T2>, 22 players <P1...P22>, a rectangular field F where each point has 

its coordinates Fxy, and a clock vector C assuming continuous values from 0 to 5400 seconds (i.e. 90 minutes). 

Probably the most obvious scientific way to simulate such soccer event could seem the use of multiagent 

systems  (Ferber 1999). By the way, I invite to think about some aspects dealing with the space and time 

extents of this complex event. Let’s suppose to divide the soccer field F into discrete squares of 1 sq. meter. 

Thus, the whole (100 m * 60 m) soccer field F would result divided into 6000 discrete squares. At each 

moment Ci  (0 ≤ i ≤ 5400), each square can assume 23 different configurations. In fact, it can be occupied by 

any of the 22 players, but it can also be empty. It follows that at each moment, we have 236000 possible spatial 

configurations of the soccer game, where each player can of course occupy only 1 square at any moment. If we 

also consider that, at any moment Ci , in any square a player can play at least 10 actions (e.g., run, pass, shot 
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etc.) it follows that 10^(236000) events are possible at each moment. It results that, during the whole soccer 

match, if we consider together the spatial and temporal dimensions we have 5400*(10^(236000)) possible 

space-time configurations of soccer events. The amount of such grandness is unimaginable. 

This is the reason why I state that the use of multiagent systems to simulate soccer events is improper: too 

many possible configurations are possible. The only way to simulate such event is to turn its complexity into 

its irreducible essence. When such irreducible essence is tamed, stochasticity can then be added.  

In this paper, I describe in outline a math algorithm, named Soccer-Decoder (Ferrarini, 2012a) and 

implemented through the software Soccer-Lab (Ferrarini, 2012b), based on game theory (Brandenburger, 2014; 

Maynard Smith, 1982), which exactly does this: 1) it turns soccer complexity into its irreducible and structural 

essence, and 2) simulates soccer matches by adding stochasticity to such structural essence.  

 

2 A Simulation Framework Based on Game Theory 

The math algorithm Soccer-Decoder turns a soccer match into the following variables and parameters: 

- defensive skill (DS) 

- midfield skill (MS) 

- offensive skill (OS) 

- goalkeeper skill (GS) 

- field factor (FF) 

- trainer skill (TS) 

- players experience (PE) 

- athletic decay (AD) 

- game style (GS) 

 

Midfield skill is given by  

k
k

MS M            (1) 

where Mk is the skill of each midfielder. The number of midfielders is set-up by the user. 

Defensive skill is given by  

1

2i k
i k

DS D M            (2) 

where Di is the skill of each defender, while Mk is the skill of each midfielder. The rationale is that the 

defensive phase is made by defenders above all, but also midfielders give a (lesser) contribution. 

The number of defenders is set-up by the user. 

Offensive skill is given by  

1

2j k
j k

OS S M            (3) 

where Sj is the skill of each striker, while Mk is the skill of each midfielder. The rationale is that the offensive 

phase is made by strikers above all, but also midfielders give a (lesser) contribution. The number of strikers is 

set-up by the user. 

The field factor (FF), the trainer skill (TS) and the players experience (PE) add scores to DS, MS and OS. 

The athletic decay AD during the match acts as follows: 
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AD DS
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dMS

AD MS
dt

dOS
AD OS
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  

  

  

                          (4) 

 

To date, two game styles (GS) are possible in Soccer-Decoder: ball possession (BP) and counter-attack 

(CA). For example, a BP action of team 1 happens using the following algorithm: 

 

MS of team 1 VS MS of team 2 

if MS of team 2 wins the battle, then the action of team 1 is over 

else 

OS of team 1 VS DS of team 2 

if DS of team 2 wins the battle, then the action of team 1 is over  (5) 

else 

  OS of team 1 VS GS of team 2 

if GS of team 2 wins the battle, then the action of team 1 is over 

else GOAL 

 

How to decide the winner of each single battle (e.g. MS1 vs. MS2 or OS1 vs. DS2)? To do this, 

Soccer-Decoder makes use of the following algorithm. Let’s suppose that we want to simulate, for a single 

action, the battle between MS of team 1 and MS of team 2. Soccer-Decoder produces a random number R1 

between 0 and MS1. R1 is sampled from a statistical Erlang’s distribution (Fig. 1) 

 

                    (6) 

 

with peak exactly equal to MS (Fig. 1). In other words, the random number R1 has higher chance to be close to 

MS but it can also, with lower probability, bear values < MS. 

The rationale behind this algorithm is clear. During each battle, a team's unit (defence, midfield, attack) 

can't do better than its best. Hence, stochasticity must generate a number that is equal or lower than the unit's 

overall skill (i.e. DS, MS, OS). Of course, such number can't be completely random. Erlang’s distribution (Fig. 

1) is effective in order to produce realistic random numbers which, at most, are equal to the unit's overall skill. 

I have also tried numerous other statistical distributions, for instance Chi and Chi-squared distributions, 

extreme value (Gumbel) distribution, gamma and log-normal ones. By the way, Erlang’s distribution provided 

the best results when I compared the outcomes of Soccer-Decoder to real life soccer matches. 
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Now I’ll simulate just 1 soccer match (Table 3). The Red Team is predicted to win 2-1 (2-0 after the first 

half of the match). It is interesting to note that, since the Red Team plays ball possession, 50 out of 100 of its 

actions have been stopped by the opponent midfield. Instead Team 2, which plays a counter-attack game, has 

been prevalently stopped by opponent defence (73 times out of 100). The Read Team has shot 10 times on 

goal, the Blue Team just 2 times (Table 3). The assignment of goals to defenders, midfielders and strikers 

follows a complex algorithm not described here. 

 

 

Table 3 Game synthesis. The Red Team is predicted to win 2-1. 

Match synthesis Red Team Blue Team 

goals 2 1 

goals by defenders 0 0 

goals by midfielders 1 1 

goals by strikers 1 0 

actions blocked by opponent midfield 50 24 

actions blocked by opponent defence 38 73 

actions blocked by opponent goalkeeper 10 2 

 

 

Now I’ll simulate 1000 soccer matches between the two teams. Depending on several parameters, each 

match is the result of about one thousand game theory battles. This means that the simulation of 1000 matches 

requires about 1 million battles to be calculated. Results are showed in Table 4. 

 

 

Table 4 Results of the simulation of 1000 soccer matches between the Red Team and the Blue one. 

Simulation of 1000 matches Red Team Blue Team 

won matches 633 101 

drawn matches 266 266 

lost matches 101 633 

scored goals 1274 379 

opponent goals 379 1274 

most likely result 1 0 

 

 

After 1000 simulated matches, we can conclude that the Red Team has a probability equal to 63.3% to win 

the match (26.6% of getting a draw, and 10.1% of losing the match), and that the most likely match result is 

1-0 for the Red Team (277 times out of 1000) with goal by a midfielder in the first half of the match. The 

second most probable result is 2-1 for the Red Team (161 times out of 1000; 2-0 in the first half of the 

match).The third most probable result is 1-1 (137 times out of 1000) with goals by a striker (Red Team; first 

half of the match) and a midfielder (Blue Team; second half).  

 

4 Conclusions 

Game theory, differential calculus and stochastic simulations are combined by the math algorithm 

Soccer-Decoder in order to simulate the complexity of a human event like a soccer match. The philosophy on 
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the underside of Soccer-Decoder is that even very complex real world events, when transformed into their 

irreducible essence, can be understood and predicted. 

Improvements to Soccer-Lab are underway. The most interesting one is the joining of Soccer-Decoder 

with Evolutionary Network Modelling for eliminating any subjectivity in the attribution of simulation 

parameters, and for estimating the optimized set of parameters of a soccer team in order to change a probable 

defeat into a probable victory. 
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