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Abstract 

Community assembly is the process that species grow and interact to establish a community. In present study, 

a generalized, rule-based network evolution model, CommAssembly, for community assembly was proposed. 

The model is based on difference equations with different number of species in different stages of evolution. It 

consists of pioneer rule, invasion and growth rule, extinction rule, connection (flow) rule and termination rule, 

etc. Species invades, grows in, or quits the community following specific rules. In addition, I proposed the 

self-organization theory on community assembly. In this theory, I think that community assembly is a 

self-organization process. In terms of the model proposed, the practical community can spontaneously adjust 

its A(t), and guarantee itself to evolve in a natural way. Temporal dynamics and species composition of 

community depend on species composition of species pool, between-species interactions, intrinsic growth of 

species, environmental capacity (resource availability), and the probability, strength and history of invasions, 

etc. The invasion, establishment, growth, and extinction of species follow a series of rules. Community 

assembly can be best described and modeled with self-organization approaches. The model provides the basis 

to build self-organization models of community assembly. 

 

Keywords community assembly; network evolution; differential equation; difference equation; rules; 

self-organization theory.  

 

 

 

 

 

 

 

 

1 Introduction 

Community assembly is the process that species growth and interact to establish a community (Zhang, 2014c). 

It stresses the change of community over a single phase (Warren et al., 2003). Community assembly may 

likely lead to a diverse and stable community. Community assembly might be constrained by local (abiotic 

characteristics of habitat) or regional (composition of species pool, habitat isolation) factors (Bossuyt et al., 

2005). Theory and knowledge on community assembly provides basic rules for species assembly (Chase, 2003; 

Zhang, 2011, 2012a, 2012b, 2012c, 2014a, 2014b). Community assembly rule was firstly proposed by 
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Diamond in 1975. He pointed out that community assembly is the process that species in the regional species 

bank join the local community through the multiple-layer filtering of the environment and biological 

interactions (Diamond, 1975; Wang et al., 2014). Wilson and Roxburgh (1994) thought that the rules for plant 

community assembly are a series of potential rules restricting the presence or increase of species. Up till now, 

a lot of rules have been proposed, among which the most accepted rule is species co-occurrence hypothesis 

proposed by Diamond (1975). Fukami (2010) defined the mechanism of community assembly as a 

construction and conservation process of local community through sequential arrival of species from the 

external species bank and increase/extinction of species in the community. Community assembly 

acknowledges that the community tends to be stable over the time, and acknowledges the role of interspecific 

interactions, in particular competition. So far, ecological niche theory and neutral theory are two well-known 

interpretations of the mechanism for community assembly. Methods used in community assembly include 

establishing research plots, indoor simulation, etc. Some methods of community succession can be used in 

community assembly research also. 

Some researchers have built the predation structures of some communities (Dunne et al., 2002). These 

models include cascade model (Cohen and Newman, 1985; Zhang et al., 2014), habitat model (Williams and 

Martinez, 2000), and the model for energy flows and functional groups (Fath et al., 2007). In addition, Zhang 

(2012c) presented a simple probabilistic network model. 

In present study, a generalized, rule-based network evolution model for community assembly will be 

proposed. The model is based on difference equations with different number of species in different stages of 

evolution. It consists of pioneer rule, invasion and growth rule, extinction rule, connection (flow) rule and 

termination rule, etc. In addition, I will propose the self-organization theory on community assembly, based on 

modeling results and previous knowledge.  

 

2 Model: CommAssembly 

Suppose there are totally m species (i.e., m nodes in the network) in the species pool of a community being 

assembled. The nonlinear differential equation of dynamics of the n-species (nm) community is 

 

dx/dt=f(x, t) 

 

where x=(x1, x2, …, xn), f(x, t)=(f1(x, t), f2(x, t), …, fn(x, t)). Suppose f(x, t) is second-order differentiable, then 

in a short time interval, the nonlinear equation can be approximated with a linear differential equation 

 

dx/dt=A(t)x 

 

where x=(x1, x2, …, xn), A(t)=(aij(t))nn, aij(t)=fi(x, t)/xj(t), i, j=1, 2, …, n. The linear differential equation can 

be transformed to a difference equation 

 

x =A(t)xt 

 

i.e.,          xi = (ai1(t)x1+ ai2(t)x2+…+ ain(t)xn)t     i=1, 2, …, n 

 

Without loss of generality, let t =1, we have  

 

xi = ai1(t)x1+ ai2(t)x2+…+ ain(t)xn     i=1, 2, …, n 
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The rule for population dynamics is thus 

 

         xi(t+1)= ai1(t)x1(t)+ ai2(t)x2(t)+…+aii-1(t)xi-1(t)+ (1+aii(t))xi(t)+aii+1(t)xi+1(t)+…+ ain(t)xn(t)  

   i=1, 2, …, n 

                                                                   (1) 

 

The coefficients, aij(t), i, j=1, 2, …, n; ij, are correlated with various ecological interactions between 

species (e.g., competition, mutualism, predation, etc.). If both aij(t)=0 and aji(t)=0, the species i and j do not 

have niche overlap. The coefficients, aii(t), i=1, 2, …, n, are correlated with intrinsic growth and resource 

availability of each species, etc.  

Assign each species with an invasion probability pi(t), i=1, 2, …, m, and an invasion strength (population 

size) ci(t), i=1, 2, …, m. 

(1) Pioneer rule. Let t=1; randomly choose a species, i, with the invasion strength ci(t), and let it establish  

in the community. Let xi(t)=ci(t). As described in rule (1), The species will grow to the next time step, 

following the rule xi(t+1)= (1+aii(t))xi(t).  

(2) Invasion and growth rule. t=2; For each species in the species pool, randomly choose a species at its  

invasion probability from the species pool, in exception of i. If no species is chosen, xi(t+1)= (1+aii(t))xi(t); 

otherwise, if the species j is chosen and established, let xj(t)=cj(t), and we have the rule 

 

xi(t+1)= (1+aii(t))xi(t)+aij(t)xj(t)  

xj(t+1)= (1+ajj(t))xj(t)+aji(t)xi(t)                             (2) 

 

The same species, for example, species j, established in earlier time, can invade the community again. In this 

case, let  

 

             xj(t) xj(t)+ cj(t) 

 

Once an invasion occurs, the population changes according to the equation group (2). If the population tends to 

zero, as described in the following extinction rule, the establishment of the species is not successful. Thus 

species establishment is naturally included in the model. 

Two or more species can be chosen and established simultaneously. In this case, several species and 

equations should be added in equation group (2), following the form of equation group (1).  

(3) Extinction rule. Following the rule (1), repeatedly use invasion and growth rule. Suppose until certain 

time steps are conducted, the rule is the equation group (1), and a species, k (without loss of generality, 

suppose k<i), is removed from community because its population size becomes zero. Then the rule (1) 

becomes 

 

         xi(t+1)= ai1(t)x1(t)+ ai2(t)x2(t)+…aik-1(t)xk-1(t)+aik+1(t)xk+1(t)+…+aii-1(t)xi-1(t)+  

(1+aii(t))xi(t)+aii+1(t)xi+1(t)+…+ ain(t)xn(t)  

i=1, 2, …, k-1, k+1, …, n 

                                                                   (3) 

 

Two or more species can be removed simultaneously. In this case, several species and equations should be 

removed from equation group (1).  
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(4) Connection rule (flow rule). At each time step, for species i and j (ij) 

 

if aij(t)0, or aji(t)0, there is a connection (interaction) between species i and j  

if aij(t)0 and aji(t)=0, there is a connection from species j to i, and aij(t) is the flow coefficient 

(connection weight) 

if aij(t)=0 and aji(t)0, there is a connection from species i to j; aji(t) is the flow coefficient (connection 

weight) 

if aij(t)0 and aji(t)0, there is a loop between species i and j; aij(t) and aji(t) are the flow coefficients 

(connection weights) 

if aij(t)=0 and aji(t)=0, there is not a connection between species i and j  

 

In addition 

 

if aij(t)=0 and aji(t)=0, j=1, 2, …, n; ij, species i is a isolated (redundant) species 

 

(5) Termination rule. Repeat the steps (2) to (4), until the community tends to be stable, i.e.,  

 

      xi(t+1)= xi(t)     iS                                     (4) 

                                                       

where S is the set of species occurred in the community, or until a certain number of iterations is achieved. 

 

3 Application Example 

3.1 Model simplification and computational codes 

For present example, I simplify above model for convenient demonstration as follows 

 

In the equation group (1), if xi(t+1)Ki(t+1), let xi(t+1)=Ki(t+1), i=1, 2, …, n, where Ki(t) is 

environmental capacity of species i at time t, and further, let Ki(t)=Ki, i=1, 2, …, m; 

     Let A(t)=A, where A is a constant matrix; 

Let pi(t)=pi, i=1, 2, …, m; 

Let ci(t)=ci, i=1, 2, …, m. 

 

Ki, A, pi, and ci, are generated with random numbers. The simplified model and data generation method are 

included in the following Matlab codes 

 

%Reference: Zhang WJ. 2015. A generalized network evolution model and self-organization theory on community 

assembly. Selforganizology, 2(3): 55-64 

m=30;       % Set the number of species in species pool 

tmax=1000;  % Maximum number of iterations 

% Generate the coefficient matrix A 

a=rand(m); 

growfac=0.05; 

interactfac=0.1; 

nointeractfac=0.3; 

neginteractfac=0.8; 

for i=1:m; for j=1:m;  
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if (i==j) a(i,j)=a(i,j)*growfac; continue; end 

if (a(i,j)<nointeractfac) a(i,j)=0;  

else if (a(i,j)<neginteractfac) a(i,j)=-a(i,j)*interactfac; end; end;      

end; end 

K=500+rand(1,m)*500;     % Set the environmental capacity, Ki(t), for each species; for simplified model only 

p=ones(1,m)*rand()*0.1;  % Set the invasion probability, pi(t), for each species 

c=ones(1,m)*rand()*5;    % Set the invasion strength, ci(t), for each species 

x=zeros(1,m); 

id=zeros(1,m); 

t=1; 

idx=round(rand()*m+0.5); 

id(idx)=1; 

x0=zeros(1,m); 

x(idx)=c(idx); 

while (t<tmax) 

x0=x;  

for i=1:m; 

if (id(i)==0) x(i)=0; continue; end     

s(i)=0;     

for j=1:m; 

if (id(j)==0) continue; end 

s(i)=s(i)+a(i,j)*x(j); 

end; 

x(i)=s(i)+x(i); 

end; 

w=zeros(1,m); v=zeros(1,m); 

nn=0; 

fprintf(['t=' num2str(t) '\nSpecies list and population size\n']) 

for i=1:m 

if (id(i)==0) continue; end 

if (x(i)>=K(i)) x(i)=K(i); end                  % For simplified model only 

if (x(i)<=0) id(i)=0; continue; else id(i)=1; end 

nn=nn+1; 

v(nn)=i; 

w(nn)=x(i); 

fprintf([num2str(i) '(x(' num2str(i) ')=' num2str(round(x(i)*100)/100) ') ']);  

end 

fprintf(['\nTotal number of species=' num2str(sum(id)) '\nConnection and connection weight (flow coefficient)\n']);   

for i=1:nn 

for j=1:nn 

if (i==j) continue; end 

if (a(v(i),v(j))~=0) fprintf([num2str(v(i)) '  ' num2str(v(j)) '  ' num2str(round(a(v(i),v(j))*1000)/1000) '\n']); end; 

end; end 

iso=zeros(1,m); 

for k=1:nn 
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temprow=0; 

for j=1:nn 

if (j==k) continue; end 

if (a(v(k),v(j))==0) temprow=temprow+1; end 

end; 

tempcol=0; 

for j=1:nn 

if (j==k) continue; end 

if (a(v(j),v(k))==0) tempcol=tempcol+1; end 

end;  

if ((temprow==nn-1) & (tempcol==nn-1)) iso(k)=1; end 

end  

for i=1:nn 

if (iso(i)==1) fprintf([num2str(iso(i)) '(isolated species)\n']); end 

end 

fprintf('\n\n'); 

if (sum(x==x0)==m) break; end 

if (x==K) break; end                     % For simplified model only 

t=t+1; 

for i=1:m  

if (rand()<p(i)) id(i)=1; x(i)=x(i)+c(i); end     

end 

end 

 
    The codes can be revised and improved for further specific uses. 

 

3.2 A result set and analysis 

Running the simplified model, a result set was obtained as follows 

 

t=1 

Species list and population size 

17(x(17)=2.34)  

Total number of species=1 

Connection and connection weight (flow coefficient) 

1(isolated species) 

 

t=2 

Species list and population size 

17(x(17)=2.45)  

Total number of species=1 

Connection and connection weight (flow coefficient) 

1(isolated species) 

 

t=3 
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Species list and population size 

17(x(17)=2.44) 26(x(26)=4.29)  

Total number of species=2 

Connection and connection weight (flow coefficient) 

17  26  -0.059 

26  17  0.828 

 

t=4 

Species list and population size 

17(x(17)=2.31) 26(x(26)=6.29)  

Total number of species=2 

Connection and connection weight (flow coefficient) 

17  26  -0.059 

26  17  0.828 

 

t=5 

Species list and population size 

5(x(5)=1.77) 16(x(16)=7.64) 17(x(17)=1.51) 26(x(26)=9.41)  

Total number of species=4 

Connection and connection weight (flow coefficient) 

5  16  -0.05 

5  17  -0.066 

5  26  -0.034 

16  5  -0.067 

16  17  -0.078 

16  26  0.892 

17  5  -0.062 

17  16  -0.058 

17  26  -0.059 

26  5  0.987 

26  17  0.828 

 

t=6 

Species list and population size 

5(x(5)=0.99) 16(x(16)=18.07) 21(x(21)=2.16) 26(x(26)=10.27)  

Total number of species=4 

Connection and connection weight (flow coefficient) 

5  16  -0.05 

5  26  -0.034 

16  5  -0.067 

16  21  0.842 

16  26  0.892 

26  5  0.987 

26  21  -0.067 
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t=7 

Species list and population size 

16(x(16)=29.89) 21(x(21)=2.26) 26(x(26)=10.07)  

Total number of species=3 

Connection and connection weight (flow coefficient) 

16  21  0.842 

16  26  0.892 

26  21  -0.067 

 

t=8 

Species list and population size 

16(x(16)=42.14) 21(x(21)=2.37) 26(x(26)=10.12)  

Total number of species=3 

Connection and connection weight (flow coefficient) 

16  21  0.842 

16  26  0.892 

26  21  -0.067 

 

………………… 

 

t=26 

Species list and population size 

1(x(1)=873.51) 2(x(2)=654.96) 3(x(3)=958.25) 4(x(4)=891.13) 6(x(6)=640.55) 7(x(7)=953.75) 8(x(8)=555.54) 

9(x(9)=894.91) 11(x(11)=883.97) 12(x(12)=831.03) 13(x(13)=886.55) 15(x(15)=588.44) 16(x(16)=510.21) 

17(x(17)=916.82) 18(x(18)=736.6) 20(x(20)=544.53) 21(x(21)=557.56) 22(x(22)=583.99) 23(x(23)=986.26) 

25(x(25)=799.51) 27(x(27)=622.39) 30(x(30)=655.3)  

Total number of species=22 

Connection and connection weight (flow coefficient) 

(318 connections. They are omitted for page limitation)  

 

 

    In this example, there are 30 species in species pool. In exception of species ID 5, 10, 14, 19, 24, 26, 28, 

and 29, in total of 22 species are finally established in the community. The number of species does not 

necessarily increase monotonously with the time. The changes of No. species and No. interactions are shown 

in Fig. 1. 

In the network view, the nodes, connections and topological structure change during the network 

evolution. In some conditions, the topological structure of the network will gradually stabilize with the time. 

The mechanism of the present network evolution model is thoroughly different from previous ones (Barabasi 

and Albert, 1999; Zhang, 2012a, 2012c). In addition, the networks generated by my model are directed graphs 

rather than previous undirected graphs.  
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Fig. 1 The changes of No. species and No. interactions with the time. 

 

 

4 Conclusions 

A lot of conclusions can be drawn from a number of running of the simplified model. The following findings 

are only from various settings of constant A, Ki, pi, and ci. With the changes of A(t), Ki(t), pi(t), and ci(t), 

community dynamics and species composition are expected to yield more diverse patterns. 

(1) Effect of A. Set different sets of coefficients, aij(t), i, j=1, 2, …, n; ij, community assembly dynamics will 

change accordingly, depending on signs and absolute values of aij(t), and if aij(t)=0 or not. If aij(t)=0 and 

aji(t)=0, i, j=1, 2, …, n; ij, all species have not niche overlap, and the coefficients, aii(t), i=1, 2, …, n, are thus 

pure growth rates. With different growth rates, community assembly dynamics are different. The greater 

growth rates lead to faster growth of species population. 

(2) Effect of pi. The speed of community assembly increases with pi. The species with small pi are harder to  

invade the community. 

(3) Effect of ci. The greater ci facilitate the species to reach their environmental capacity fastly. 

(4) Effect of Ki. The smaller Ki lead to the community reaching its final state earlier. 

 

5 Discussion: Self-organization Theory on Community Assembly 

Using the present model to describe community assembly, the expected and natural dynamics may occur in 

certain conditions. In the field, however, community assembly is a natural process, in which the community 

always evolves in natural ways (e.g., it gradually evolves to a diverse and stable climax). Thus I think that 

community assembly is a self-organization process. In terms of the model above, the natural community can 

spontaneously adjust its A(t), and guarantee itself to evolve in a natural way. Temporal dynamics and species 

composition of community are dependent on species composition in species pool, between-species interactions 

(in which both niche differentiation and ecological interactions are included), intrinsic growth of species 

(which includes both the reproduction potentiality and the adaptability of the species to the environment), 

environmental capacity (resource availability), and the probability, strength and history of invasions, etc. The 

invasion, establishment, growth, and extinction of species follow a series of rules. Community assembly can 

be well modeled. It can be best described and modeled with self-organization approaches (Zhang, 2012a). The 

present model provides the basis to build self-organization models of community assembly. 
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