
Selforganizology, 2015, 2(3): 46-54

 IAEES www.iaees.org

Article

Refactoring of non-dispatchable flaws in the design model based on

coupling

Syed Uzair Ahmad1, Muhammad Naeem2, Fawad Qayum3, Faqir Gul1, Faisal Bahadur1, Hafiz Abdul
Wahab1
1Department of Information Technology, Hazara University, Mansehra, Pakistan
2Department of Information Technology, Abbottabad University of Science and Technology, Abbottabad, Pakistan
3Department of Mathematics, Hazara University, Mansehra, Pakistan
4Department of IT and CS, University of Malakand, Pakistan

E-mail: ssuab.kk@gmail.com, Naeem@hu.edu.pk, Findfawad@yahoo.com, Gul@hu.edu.pk, Msosfaisal@gmail.com,

Wahabmaths@yahoo.com

Received 23 June 2015; Accepted 5 July 2015; Published online 1 September 2015

Abstract

It is always better to detect and dispatch flaws at design level before the start of development for better and

economic results. Refactoring is considered as a better way to address the design flaws. To the best of our

knowledge, none of the available techniques targets non-dispatchable flaws of the design model in their

approaches. In this paper, we are focused on multiple aspects that have been missed by the existing researchers

of refactoring. For example, use of coupling to define flaws in the design model; secondly, use of refactoring

to address the non-dispatchable flaws in the design models; thirdly, confirmation that whether addressing of a

design flaw caused other flaws or not. Furthermore, we have used real life example of a telephonic call system

to elaborate our approach.

Keywords dispatch; design flaw; refactoring; coupling.

1 Introduction

A design flaw is defined as the classes or objects having an irregular or no association with each other

(Objecteeing, 2015; Seidewitz, 2003). In other words, any design pattern that may affect the quality of

software is called a design flaw (Mekruksavanich, 2011). This is advised to detect and remove the flaws that

may exist in the design of a system. Hence, when a design flaw is found, normally researchers apply some

techniques like refactoring to refine the design from that flaw (Yaowarattanaprasert and Muenchaisri, 2013).

The later the flaws are handled the harder to understand, maintain the system (Mekruksavanich, 2011;

Tahvildari and Kontogiannis, 2003; Mens et al., 2004; Bacchelli, 2010; Saxena and Kumar, 2012).

Selforganizology
ISSN 2410­0080
URL: http://www.iaees.org/publications/journals/selforganizology/online­version.asp
RSS: http://www.iaees.org/publications/journals/ selforganizology/rss.xml
E­mail: selforganizology@iaees.org
Editor­in­Chief: WenJun Zhang
Publisher: International Academy of Ecology and Environmental Sciences

Selforganizology, 2015, 2(3): 46-54

 IAEES www.iaees.org

2 Background

Fowler and Beck in (1999) defines the process of Refactoring as: “Refactoring is the process of changing a

software system in such a way that it does not alter the external behavior of the code yet improves its internal

structure. It is a disciplined way to clean up code that minimizes the chances of introducing bugs. In essence

when you refactor, you are improving the design of the code after it has been written”. The refactoring can be

summarized by five basic operations as addition, removal, move, generalization and specialization of modeling

elements. These operations are discussed as:

- Addition of features and relations to a class can be done when the new feature does not have the same

signature as any other features owned by the class or by its parents.

- Removal of associations and features can only be done when these elements are not referenced in the whole

model.

- Move is used to transfer a method from a class to another, and create a forwarder method in the former.

- Generalization refactoring can be applied to elements owned by classes, such as attributes, methods,

operations, association ends and state charts. It consists in the integration of two or more elements into a

single one which is transferred to a common super class. Since private features are not accessible within the

subclasses, they cannot be moved.

- Specialization refactoring is the exact opposite of Generalization (Sunyé, 2001).

Now it is important to know that how we can apply refactoring on different models, and how to find that which

model needs to be refactored. Here we use coupling technique for finding that model shall be refactored or not.

Further the description on coupling as under:

Definition1: Coupling

Coupling is defined as the degree of dependence between subsystems.

Degree of dependence shows the strength of connection of different elements of a system. For example,

ܱܤܥ ൌ
ݏ݇݊݅ܮ ݂݋ ݎܾ݁݉ݑܰ
ݏ݁ݏݏ݈ܽܥ ݂݋ ݎܾ݁݉ݑܰ

finding the coupling between objects (CBO) we can use the formula:

Normal range of coupling is from 1 to 4. More than 4 mean that tightly coupled and would complicate in

testing and modification (Objeteering, 2015). Less than 1 means no coupling and is out of the system. Thus it

shall not be considered as a part of the system.

Types of coupling

1) Message: Component communicates via message passing.

2) Content: a module depends on the internal working of another module

3) Common: two modules share the same global data.

4) External: modules share an externally imposed data format, or communication protocol.

5) Control: one module controls the flow of another, by passing it information on what to do.

6) Stamp: modules share a composite data structure and use only part of it.

The coupling shows all the associations, but to know the description of these associations and details we are

going to use Meta model of the models.

Meta model

A Meta model is an arrangement model for a class where each class is itself a valid model articulated in a

definite modeling language. A Meta model makes statements about what can be articulated in the valid models

47

Selforganizology, 2015, 2(3): 46-54

 IAEES www.iaees.org

of a definite modeling language. The Meta model conception for software modeling is also mainly important

because it forms the foundation for the UML definition (Yaowarattanaprasert and Muenchaisri, 2013).

The rest of the paper is arranged as follows: Sections 2 and 3 contain discussion about the related

approaches and our methodology, respectively. The Section 4 elaborates on the case study for the

implementation of our methodology, while the Section 5 concludes the paper.

3 Related Work

Moha (2007) provided a systematic method to specify design defects accurately. Their approach is based on

detection and correction algorithms by using refactoring semi-automatically. To apply and validate these

algorithms on open-source object-oriented programs was used to show that method allows the systematic

description, detection, and correction of design defects with a reasonable precision.

Mekruksavanich (2011) proposed a methodology for detection of design flaws. Symbolic logic

representation and analytical learning technique are used to diagnose design flaws in simple way and to

extrapolate patterned rules for complex flaws. The methodology is validated by detecting design flaws in an

open-source system.

Saxena and Kuma (2012) helped to find the flaw in the design model and to remove it as early as possible.

They used the flaw pattern for finding the flaw. When design flaw is detected based in the design pattern, the

process exits after dispatching that flaw, the proposed approach was composed of model representation of

design model and flaws detection using flaw patterns. The design models of UML class and sequence

diagrams were used as an input. It would be transformed to the proposed representation model. In detecting

flaws, flaw patterns are used in checking against the representation model. This study covered flaw patterns for

detecting Large Class, Refused Bequest, and Middle Man.

In Mohamed et al. (2011), authors used the approach of automatic flaw detection in design model. To

find the number of flaw number of classes and detection. Which was based on model qualities metrics and

design flaws, author suggest a new demarche allowing the mechanized finding of model refactoring

opportunities and the assisted model restructuration. Which focused on class and sequence diagrams. That

developed a software call’s M-Refactor for those works.

According to Trifu et al. (2004) authors used the flaw detection and correction. The process as problem

detected, developers obtain a list of design flaws together with their location in the system. The necessary

transformations that removed them were left to their own judgment and experience. The mapping between

specific design flaw and code transformations is removed.

In Kessentini (2011) authors used an approach to detect the flaw in design and correct the flaw in the

source code. Their approach support automatic generation of rules to detect defects by the help of genetic

programming. Using a genetic algorithm, adjustment solutions are found by combining refactoring operations

in such a way to reduce the number of detected defects. The detection system is physically specified. Projected

corrections fix, in standard, more than 74% of detected defects.

Alikacem and Sahraoui (2010) provide support for source code analysis. They proposed a rule-based

approach that allowed the specification and detection of flaws. The approach provided a new language to

describe flaws as sets of rules. The latter are translated into Jess’s rule format, and given as input to Jess

inference engine. The current work is an extension of our source code analysis platform and PatOIS, a metric

description language. A main advantage of his approach was its extensibility since the tool is not limited to a

set of predefined flaws. Existing flaws could be modified to a specific context and new ones could be added.

Budi et al. (2011) provided a framework that automatically labels classes as Boundary, Control, or Entity,

and detects design flaws of the rules associated with each stereotype. Their evaluation with programs

48

Selforganizology, 2015, 2(3): 46-54

 IAEES www.iaees.org

developed by both novice and expert developers show that his technique is able to detect many design flaws

accurately.

The main theme of authors in the paper is to find flaw through metric base and convert it into code may in

Java or C++. They defined such detection strategies for capturing around ten important flaws of

object-oriented design found in the literature and validated the approach experimentally on multiple large-scale

case-studies (Marinescu, 2004).

Marinescu (2003) focused on flaw detection through metric base and converted into object-oriented system.

This paper presented a metrics-based approach for detecting design problems, which describes two concrete

techniques for the detection of two well-known design flaws found in the literature. By an experiment it was

showed that the proposed technique found indeed real flaws in the system and it suggests that, based on the

same approach.

Moha et al. (2008) used an approach propose a novel approach for defect removal in object-oriented

programs that combines the efficiency of metrics with the theoretical strength of formal concept analysis

Algorithm. They suggested a novel approach for defect deduction in object-oriented programs that combines

the usefulness of metrics with the hypothetical power of formal concept analysis, and case study of an exact

fault.

Simon et al. (2006) have worked for finding bad smells. With four typical refactorings and present both a

tool supporting the identification and case studies of its application. They showed that special kind of metrics

can support these skewed perceptions and thus can be used as effective and efficient way to get support for the

decision where to apply which refactoring. They demonstrate this loom for four typical refactorings and

present both a tool supporting the classification and case studies of its function.

In the above mentioned techniques there is no single technique that targets dispatchable and

non-dispatchable flaws. Similarly There is no confirmation check in the available approaches that whether a

flaw has been removed or not. In the existing techniques, there isn’t any flaw detection technique that uses

coupling. In our work, we are going to address all the weakness discussed above and used a process which will

be further discussed in our approach.

4 Our Approach

We specifically address the design flaws because if flaws flow down to further development phases, they

become more costly to be addressed. Our approach consists of the following steps:

Step 1: Domain analysis and metrics identification

Step 2: Modeling and meta modeling

Step 3: Flaw detection and flaw pattern

Step 4: Option if flaw >1 or no flaw found

Step 5: Condition check for dispatch and non-dispatchable flaw

The systematic view of our approach:

Step 1 (Domain Analysis): We will do the analysis of the domain area, in this step we associate manually

with each design defect to detect them and set refactoring by using metric based identification to find class and

their association through coupling.

Step 2 (Modeling): In modeling, the Meta model for software modeling is important, because it forms the

basis for the UML definition. The UML specification document is indeed a Meta model for UML. That is, it

includes a set of statements that must not be false for any valid UML model. (This Meta model, in its entirety,

49

 IAEES

includes

Step 3 (F

a format

measures

elements

Step 4 (F

not then

all the concre

Flaw Detecti

t which will

s the strength

s, we use the f

Flaw does ex

exit. Using th

ete graphical

on): In this s

identify a f

h of all relati

formula that

xist or not): U

he pattern as

Fig

Selforga

notation, abs

tep, we find t

flaw in the m

ionships betw

is already dis

F

Using the abo

depicted in F

g. 3 Finding dis

anizology, 2015

stract syntax,

Fig. 1 Our A

the flaws by u

model. We u

ween function

scussed in Sec

Fig. 2 Flaw Dete

ove formula,

Fig. 3

spatchable and n

5, 2(3): 46-54

and semantic

Approach.

using flaw de

use coupling

nal units. Fo

ction 1.

ection.

if flaw exists

non-dispatchab

cs for UML.)

etection patte

for the dete

r the calcula

s then to be re

le flaws

 w

)

rns. Basically

ction of flaw

ation of coupl

efactored or d

www.iaees.org

y, a pattern is

ws. Coupling

ling between

dispatched, if

s

g

n

f

50

 IAEES

When

dispatcha

for refact

Step 5:

dispatch

non-disp

Firs

removed

tag Ref;

has refac

model go

dispatche

5 An Illu

Let us co

process t

will chec

In o

in use int

To obtain

1) C

2) M

3) M

n the flaw =

able or non-d

toring to refa

(Flaw check

able or no

atchable flaw

st condition i

d there. The s

attached to th

ctored and di

oes again for

ed or refactor

ustrative Exa

onsider an ex

to find the fla

ck that how w

order to impro

to a compoun

n the result sh

Create a com

Move Idle an

Merge the “h

=0, it will e

dispatchable, i

actor module.

king of disp

on-dispatchab

w goes to the n

is to check t

econd condit

he refactored

idn’t need to

r rechecking

red.

F

ample

xample of a te

aws and rem

we can improv

ove understan

nd state, thus

hown in Fig.

mposite super

nd the initial p

hang up" trans

Selforga

exit else if

if dispatchab

As shown in

patchable or

ble. The disp

non-dispatch

that if flaw i

tion: If the fla

flaw as a com

catch it agai

flaws to the

Fig. 4 Conditio

elephone with

move the dispa

ve our design

ndability.We

segregatingth

6, four refact

state, named

pseudo state o

sitions into a

anizology, 2015

flaw≥1then

le go to dispa

n the Fig. 3 ab

r non-dispatc

patchable fla

hable flaw mo

is dispatchab

aw is non dis

mment for th

in. Both from

detection fla

n check and no

h different sta

atchable and

n model throu

group the sta

heidle state an

toring steps a

Active, surro

out of Active

transition lea

5, 2(3): 46-54

condition sh

atchable mod

bove.

chable): Con

aw goes to

odule as show

le, the flaw

spatchable an

he detected fla

m dispatch an

aw module. T

on-dispatchable

ates (inspired

non-dispatch

ugh our appro

ates modeling

nd allowing t

are needed:

ounding the w

.

aving the bou

hall be check

dule otherwise

ndition check

dispatchable

wn in Fig. 4.

goes to the

nd been remo

aw module to

nd non-dispa

The cycle con

flaw.

d by (Sunyé e

hable flaws th

oach the case

g thebehavior

the use of hig

whole current

undary of Acti

 w

ked. That ei

e non-dispatc

king whether

e flaw mod

dispatchable

oved through

o understand t

atchable flaw

ntinues until

et al, 2001)).W

hrough our a

is under in Fi

r of the phon

gh-level trans

t diagram.

ive.

www.iaees.org

ither flaw is

chable and go

r the flaw is

dule and the

module and

refactoring a

that this flaw

modules the

all flaws are

We apply the

approach. We

ig. 5:

ne. When it is

itions.

s

o

s

e

d

a

w

e

e

e

e

s

51

 IAEES

4) F

p

These are

- C

- M

o

- T

t

- T

t

Acco

but it is a

Finally, split

pseudo state/

F

e the justifica

Creating a su

Moving the I

of existing ac

Transitions e

the same labe

The replacem

top-level tran

ording to the

a flaw which

the “lift" tra

/transition tar

Fig. 5 Initial pho

ations for the

urrounding sta

Idle state out

ctions is unch

exiting Active

el and target t

ment of the “

nsition enterin

formula of c

we cannot di

Selforga

ansition into

geting Dial T

one state diagra

previous tran

ate is trivially

is legal here

hanged.

e can be fold

the same state

“lift" transitio

ng Active (Su

- F

coupling as id

ispatch totally

anizology, 2015

a transition f

Tone.

am (dotted tran

nsformations:

y behavior-pr

: Active has n

ded to a top-le

e).

on by a top-

unyé, 2001).

Fig. 6 Passing th

dle state have

y. So, we refa

5, 2(3): 46-54

from Idle to

sitions are trigg

:

reserving.

no entry or e

evel transitio

-level one is

hrough process

e more transi

actored it and

the boundary

gered when the

exit actions, a

on since they

possible giv

s.

itions. Hence

d refined it as

 w

y of Active a

caller hangs up

and so the exe

are equivale

ven that there

 it considers

in Fig. 6.

www.iaees.org

and a default

p.

ecution order

nt (they hold

e is no other

being a flaw

t

r

d

r

w

52

Selforganizology, 2015, 2(3): 46-54

 IAEES www.iaees.org

On the other hand the call dead, station fault, wire fault are those states which has only doted arrow

means hang up transitions. So when hang up transitions are refactored then those states have no more

transitions with Idle. As no transitions according to the definition of coupling its mean it is not a part of this

model and shall be dispatch, so we dispatch all these three states as in Fig. 6. The refactoring presented here

can be summarized in five basic operations: addition, removal, move, generalization and specialization of

modeling elements.

The two last actions use the generalization relationship to transfer elements up and down a class hierarchy.

Most part of the modeling elements composing the class diagram may have a direct connection to the elements

of other views. Therefore, some of the refactoring that apply to class diagrams may have an impact on different

UML views (Sunyé et al, 2001).

6 Conclusions

Form all our work we are now able to check out a flaw from the design pattern, to find a flaw the statistical

formula has been used. After that two sort of flaw may occur the one is that flaw which is dispatchable and the

other one which is non-dispatchable. Applying rules for removing both of the flaws if found, we remove the

flaws of both sorts and got a flaw free design for high quality of software to produce.

In future, we will apply our approach over the larger case studies. Our work is in process to automate the

whole process for automatic checking of flaws using coupling.

References

Alikacem H and Sahraoui HA. 2010. Rule-Based System for Flaw Specification and Detection in

Object-Oriented Programs. 13th TOOLS Workshop on Quantitative Approaches in Object-Oriented

Software Engineering. 1-11

Bacchelli, Lanza M. 2010. On the Impact of Design Flaws on Software Defects. IEEE 10th International

Conference on Quality Software (QSIC), 23-31

Budi A, Lucia, Lo D, Jiang L, Wang S. 2011. Automated Detection of Likely Design Flaws in Layered

Architectures, Research Collection School of Information Systems, 1-6

Fowler M, Beck K. 1999. Refactoring: Improving the Design of Existing Code. Addison-Wesley Professional,

USA

Kessentini M, Kessentini W, Erradi A. 2011. Example-based Design Defects Detection and Correction. IEEE

19th International Conference Program Comprehension (ICPC). 81-90

Marinescu R. 2001. Detecting Design Flaws via Metrics in Object-Oriented Systems. 39th International

Conference and Exhibition on Technology of Object-Oriented Languages and Systems (TOOLS), 173-182

Marinescu R. 2004. Detection Strategies: Metrics-Based Rules for Detecting Design Flaws. International IEEE

20th Conference on Software Maintenance, 350-359

Mekruksavanich S. 2011. Design flaws detection in object-oriented software with analytical learning method.

International Journal of e-Education, e-Business, e-Management and e-Learning, 1(3): 210-216

Mens T, Tourw T. 2004. A Survey of Software Refactoring. IEEE Transactions on Software Engineering,

30(2): 126-139

Moha N. 2007. Detection and Correction of Design Defects in Object-Oriented Architectures. Companion to

the 22nd ACM Special Interest Group ACM SIGPLAN Conference, 949-950

Moha N, Rezgui J, Gueheneuc Y, Valtchev P, Boussaidi G. 2008. Using FCA to Suggest Refactorings to

Correct Design Defects. 4th International Conference on Concept Lattices and Their Applications, LNCS

53

Selforganizology, 2015, 2(3): 46-54

 IAEES www.iaees.org

4923, 269-275

Mohamed M, Romdhani M and Ghedira K. 2011. M-REFACTOR: A new approach and tool for model

refactoring. American Resources Policy Network (ARPN) Journal of Systems and Software, 1(4): 1-6

Objecteeing. 2015. http://support.objecteering.com

Saxena V, Kumar S. 2012. Impact of coupling and cohesion in object-oriented technology. Journal of Software

Engineering and Applications, 671-676

Seidewitz E. 2003. What Models Mean. IEEE Software. Publisher IEEE Computer Society Press Los Alamitos,

CA, USA, 20(5): 26-32

Simon F, Steinbrückner F, Lewerentz C. 2001. Metrics Based Refactoring. IEEE 5th European Conference on

Software Maintenance and Reengineering, 30-38

Sunyé, Gerson, Pollet D, Traon Y, and Jézéquel J. 2001. Refactoring UML Models.اUML2001 ب--The

Unified Modeling Language. Modeling Languages, Concepts and Tools. 134-148, Springer Berlin

Heidelberg, Germany

Tahvildari L, Kontogiannis K. 2003. Metric-Based Approach to Enhance Design Quality Through

Meta-Pattern Transformations. Proceedings of 7th European Conference on Software Maintenance and

Reengineering, 183-192

Trifu A, Seng O, Genssler T. 2004. Automating Design Flaw Correction in Object-Oriented Systems.

Proceedings of 8th European Conference on Software Maintenance and Reengineering (CSMR 2004).

174-183

Yaowarattanaprasert N, Muenchaisri P. 2013. Graphical pattern matching approach for detecting design flaw

in design model. International Journal of Advanced Research in Computer Science and Software, 2: 1-5

54

