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Abstract 

It is always better to detect and dispatch flaws at design level before the start of development for better and 

economic results. Refactoring is considered as a better way to address the design flaws. To the best of our 

knowledge, none of the available techniques targets non-dispatchable flaws of the design model in their 

approaches. In this paper, we are focused on multiple aspects that have been missed by the existing researchers 

of refactoring. For example, use of coupling to define flaws in the design model; secondly, use of refactoring 

to address the non-dispatchable flaws in the design models; thirdly, confirmation that whether addressing of a 

design flaw caused other flaws or not. Furthermore, we have used real life example of a telephonic call system 

to elaborate our approach. 
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1 Introduction 

A design flaw is defined as the classes or objects having an irregular or no association with each other 

(Objecteeing, 2015; Seidewitz, 2003). In other words, any design pattern that may affect the quality of 

software is called a design flaw (Mekruksavanich, 2011). This is advised to detect and remove the flaws that 

may exist in the design of a system. Hence, when a design flaw is found, normally researchers apply some 

techniques like refactoring to refine the design from that flaw (Yaowarattanaprasert and Muenchaisri, 2013). 

The later the flaws are handled the harder to understand, maintain the system (Mekruksavanich, 2011; 

Tahvildari and Kontogiannis, 2003; Mens et al., 2004; Bacchelli, 2010; Saxena and Kumar, 2012). 
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2 Background 

Fowler and Beck in (1999) defines the process of Refactoring as: “Refactoring is the process of changing a 

software system in such a way that it does not alter the external behavior of the code yet improves its internal 

structure. It is a disciplined way to clean up code that minimizes the chances of introducing bugs. In essence 

when you refactor, you are improving the design of the code after it has been written”. The refactoring can be 

summarized by five basic operations as addition, removal, move, generalization and specialization of modeling 

elements. These operations are discussed as: 

- Addition of features and relations to a class can be done when the new feature does not have the same 

signature as any other features owned by the class or by its parents. 

- Removal of associations and features can only be done when these elements are not referenced in the whole 

model. 

- Move is used to transfer a method from a class to another, and create a forwarder method in the former. 

- Generalization refactoring can be applied to elements owned by classes, such as attributes, methods, 

operations, association ends and state charts. It consists in the integration of two or more elements into a 

single one which is transferred to a common super class. Since private features are not accessible within the 

subclasses, they cannot be moved. 

- Specialization refactoring is the exact opposite of Generalization (Sunyé, 2001). 

Now it is important to know that how we can apply refactoring on different models, and how to find that which 

model needs to be refactored. Here we use coupling technique for finding that model shall be refactored or not. 

Further the description on coupling as under: 

 

Definition1: Coupling 

Coupling is defined as the degree of dependence between subsystems.  

Degree of dependence shows the strength of connection of different elements of a system. For example, 

ܱܤܥ ൌ
ݏ݇݊݅ܮ ݂݋ ݎܾ݁݉ݑܰ
ݏ݁ݏݏ݈ܽܥ ݂݋ ݎܾ݁݉ݑܰ

 

finding the coupling between objects (CBO) we can use the formula: 

Normal range of coupling is from 1 to 4. More than 4 mean that tightly coupled and would complicate in 

testing and modification (Objeteering, 2015). Less than 1 means no coupling and is out of the system. Thus it 

shall not be considered as a part of the system. 

 

Types of coupling 

1) Message: Component communicates via message passing. 

2) Content: a module depends on the internal working of another module 

3) Common: two modules share the same global data. 

4) External: modules share an externally imposed data format, or communication protocol. 

5) Control: one module controls the flow of another, by passing it information on what to do.  

6) Stamp: modules share a composite data structure and use only part of it. 

The coupling shows all the associations, but to know the description of these associations and details we are 

going to use Meta model of the models. 

 

Meta model 

A Meta model is an arrangement model for a class where each class is itself a valid model articulated in a 

definite modeling language. A Meta model makes statements about what can be articulated in the valid models 
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of a definite modeling language. The Meta model conception for software modeling is also mainly important 

because it forms the foundation for the UML definition (Yaowarattanaprasert and Muenchaisri, 2013). 

The rest of the paper is arranged as follows: Sections 2 and 3 contain discussion about the related 

approaches and our methodology, respectively. The Section 4 elaborates on the case study for the 

implementation of our methodology, while the Section 5 concludes the paper. 

 

3 Related Work 

Moha (2007) provided a systematic method to specify design defects accurately. Their approach is based on 

detection and correction algorithms by using refactoring semi-automatically. To apply and validate these 

algorithms on open-source object-oriented programs was used to show that method allows the systematic 

description, detection, and correction of design defects with a reasonable precision. 

Mekruksavanich (2011) proposed a methodology for detection of design flaws. Symbolic logic 

representation and analytical learning technique are used to diagnose design flaws in simple way and to 

extrapolate patterned rules for complex flaws. The methodology is validated by detecting design flaws in an 

open-source system. 

Saxena and Kuma (2012) helped to find the flaw in the design model and to remove it as early as possible. 

They used the flaw pattern for finding the flaw. When design flaw is detected based in the design pattern, the 

process exits after dispatching that flaw, the proposed approach was composed of model representation of 

design model and flaws detection using flaw patterns. The design models of UML class and sequence 

diagrams were used as an input. It would be transformed to the proposed representation model. In detecting 

flaws, flaw patterns are used in checking against the representation model. This study covered flaw patterns for 

detecting Large Class, Refused Bequest, and Middle Man. 

In Mohamed et al. (2011), authors used the approach of automatic flaw detection in design model.  To 

find the number of flaw number of classes and detection. Which was based on model qualities metrics and 

design flaws, author suggest a new demarche allowing the mechanized finding of model refactoring 

opportunities and the assisted model restructuration. Which focused on class and sequence diagrams. That 

developed a software call’s M-Refactor for those works. 

According to Trifu et al. (2004) authors used the flaw detection and correction. The process as problem 

detected, developers obtain a list of design flaws together with their location in the system. The necessary 

transformations that removed them were left to their own judgment and experience. The mapping between 

specific design flaw and code transformations is removed. 

In Kessentini (2011) authors used an approach to detect the flaw in design and correct the flaw in the 

source code. Their approach support automatic generation of rules to detect defects by the help of genetic 

programming. Using a genetic algorithm, adjustment solutions are found by combining refactoring operations 

in such a way to reduce the number of detected defects. The detection system is physically specified. Projected 

corrections fix, in standard, more than 74% of detected defects. 

Alikacem and Sahraoui (2010) provide support for source code analysis. They proposed a rule-based 

approach that allowed the specification and detection of flaws. The approach provided a new language to 

describe flaws as sets of rules. The latter are translated into Jess’s rule format, and given as input to Jess 

inference engine. The current work is an extension of our source code analysis platform and PatOIS, a metric 

description language. A main advantage of his approach was its extensibility since the tool is not limited to a 

set of predefined flaws. Existing flaws could be modified to a specific context and new ones could be added. 

Budi et al. (2011) provided a framework that automatically labels classes as Boundary, Control, or Entity, 

and detects design flaws of the rules associated with each stereotype. Their evaluation with programs 
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developed by both novice and expert developers show that his technique is able to detect many design flaws 

accurately. 

The main theme of authors in the paper is to find flaw through metric base and convert it into code may in 

Java or C++. They defined such detection strategies for capturing around ten important flaws of 

object-oriented design found in the literature and validated the approach experimentally on multiple large-scale 

case-studies (Marinescu, 2004). 

Marinescu (2003) focused on flaw detection through metric base and converted into object-oriented system. 

This paper presented a metrics-based approach for detecting design problems, which describes two concrete 

techniques for the detection of two well-known design flaws found in the literature. By an experiment it was 

showed that the proposed technique found indeed real flaws in the system and it suggests that, based on the 

same approach. 

Moha et al. (2008) used an approach propose a novel approach for defect removal in object-oriented 

programs that combines the efficiency of metrics with the theoretical strength of formal concept analysis 

Algorithm. They suggested a novel approach for defect deduction in object-oriented programs that combines 

the usefulness of metrics with the hypothetical power of formal concept analysis, and case study of an exact 

fault. 

Simon et al. (2006) have worked for finding bad smells. With four typical refactorings and present both a 

tool supporting the identification and case studies of its application. They showed that special kind of metrics 

can support these skewed perceptions and thus can be used as effective and efficient way to get support for the 

decision where to apply which refactoring. They demonstrate this loom for four typical refactorings and 

present both a tool supporting the classification and case studies of its function. 

In the above mentioned techniques there is no single technique that targets dispatchable and 

non-dispatchable flaws. Similarly There is no confirmation check in the available approaches that whether a 

flaw has been removed or not. In the existing techniques, there isn’t any flaw detection technique that uses 

coupling. In our work, we are going to address all the weakness discussed above and used a process which will 

be further discussed in our approach. 

 

4 Our Approach 

We specifically address the design flaws because if flaws flow down to further development phases, they 

become more costly to be addressed. Our approach consists of the following steps: 

Step 1: Domain analysis and metrics identification  

Step 2: Modeling and meta modeling 

Step 3: Flaw detection and flaw pattern 

Step 4: Option if flaw >1 or no flaw found 

Step 5: Condition check for dispatch and non-dispatchable flaw  

The systematic view of our approach: 

 

Step 1 (Domain Analysis): We will do the analysis of the domain area, in this step we associate manually 

with each design defect to detect them and set refactoring by using metric based identification to find class and 

their association through coupling. 
 

Step 2 (Modeling): In modeling, the Meta model for software modeling is important, because it forms the 

basis for the UML definition. The UML specification document is indeed a Meta model for UML. That is, it 

includes a set of statements that must not be false for any valid UML model. (This Meta model, in its entirety, 
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On the other hand the call dead, station fault, wire fault are those states which has only doted arrow 

means hang up transitions. So when hang up transitions are refactored then those states have no more 

transitions with Idle. As no transitions according to the definition of coupling its mean it is not a part of this 

model and shall be dispatch, so we dispatch all these three states as in Fig. 6. The refactoring presented here 

can be summarized in five basic operations: addition, removal, move, generalization and specialization of 

modeling elements. 

The two last actions use the generalization relationship to transfer elements up and down a class hierarchy. 

Most part of the modeling elements composing the class diagram may have a direct connection to the elements 

of other views. Therefore, some of the refactoring that apply to class diagrams may have an impact on different 

UML views (Sunyé et al, 2001). 

 

6 Conclusions 

Form all our work we are now able to check out a flaw from the design pattern, to find a flaw the statistical 

formula has been used. After that two sort of flaw may occur the one is that flaw which is dispatchable and the 

other one which is non-dispatchable. Applying rules for removing both of the flaws if found, we remove the 

flaws of both sorts and got a flaw free design for high quality of software to produce. 

In future, we will apply our approach over the larger case studies. Our work is in process to automate the 

whole process for automatic checking of flaws using coupling. 
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