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Abstract 

In present study, I proposed a node-similarity based algorithm for prediction of missing connections in the 

network. In this algorithm, whether a node vk can connect to vi or not, depending on the similarity between vk 

and vi, the similarities between vi and its adjacent nodes, the similarities between vk and the adjacent nodes of vi, 

and the degree of node vi, and vice versa. Pearson correlation measure, cosine measure, and (negative) 

Euclidean distance measure (the three measures are for interval attributes), contingency correlation measure 

(for nominal attributes), and Jaccard coefficient measure (for binary attributes) were used as the between-node 

similarity. Two application examples showed a better prediction of the algorithm (approximately 60% of 

missing connections are successfully predicted). Matlab codes of the algorithm were provided. 
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1 Introduction 

Connection prediction aims to estimate the likelihood of the existence of a connection between two nodes, 

based on observed connections and the attributes of nodes (Zhou, 2015). Many biological networks, such as 

food webs, protein–protein interaction networks and metabolic networks, are incomplete networks due to 

missing connections. For example, 80% of the molecular interactions in cells of Yeast (Yu et al., 2008) and 

99.7% of human (Amaral, 2008) are still unknown. An incomplete network occurs due to our limited 

knowledge on a complete network, or the network is in evolution and thus more connections or even nodes are 

expected with time. Connection prediction can considerably reduce the experimental costs for connection 

finding. Moreover, connection prediction algorithms can be used to predict the connections that may appear in 

the future of evolving networks (Lü and Zhou, 2011; Lü et al., 2012; Zhou, 2015). So far, connection 

prediction has attracted wide attention. Numerous papers on this topic have been published (Clauset et al., 

2008; Guimera R, Sales-Pardo, 2009; Barzel and Barabási, 2013; Bastiaens et al., 2015; Lü et al., 2015; Zhang, 

2015a, 2015b; Zhang and Li, 2015; Zhao et al., 2015; Zhou, 2015). 
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In present study, I will propose a node-similarity based algorithm for prediction of missing connections in 

a network. Matlab codes of the algorithm will be presented for further use. 

 

2 Algorithm 

Suppose there is an incomplete network, X, with m nodes (Zhang, 2012a), its adjacency matrix is d=(dij)m×m. 

dij=1, if two nodes vi and vj are adjacent, and dij=0, if vi and vj are not adjacent; i, j=1,2,…, m. Adjacency 

matrix d is a symmetric matrix, i.e., d=d’. Known n attributes for m nodes. The raw data matrix is a=(aij)m×n. 

Pearson correlation measure, cosine measure, and (negative) Euclidean distance measure (the three measures 

are for interval attributes), contingency correlation measure (for nominal (1, 2, 3…) attributes), and Jaccard 

coefficient measure (for binary (0, 1) attributes) can be as the between-node similarity (Zhang, 2016). 

Pearson correlation measure is (Zhang, 2011; Zhang et al., 2014; Zhang, 2012a, b; Zhang and Li, 2015) 

 

            rij= ∑k=1
n ((aik - aib)(ajk- ajb))/(∑k=1

n (aik - aib)
2 ∑k=1

n (ajk - ajb)
2)1/2        

                              i, j=1, 2,…,m 

 

where -1≤rij≤1, aib=∑k=1
n aik/n, ajb=∑k=1

n ajk/n, i, j=1, 2,…,m. 

Cosine measure is (Zhang, 2007; Zhang, 2012a) 

 

            rij= ∑k=1
n aik ajk/(∑k=1

naik
2 ∑k=1

najk
2)1/2        

                              i, j=1, 2,…,m 

 

Euclidean distance measure is (Zhang, 2007, 2012a) 

 

dij= (∑k=1
n (aik - ajk)

2)1/2 

 

Thus its negative value is used as the similarity measure 

      

            rij= -dij 

 

Contingency correlation measure is (Zhang, 2007, 2012a; Zhang et al., 2014): 

 

             rij=2(h/(s (p-1)))1/2-1  i, j=1, 2,…,m   

            

where -1≤rij≤1, and   

                          

              h= s..(∑
p

i=1∑
p
j=1sij

2/(si. s.j)-1) 

              s.=∑
p
i=1 si. ,  si. =∑

p
j=1 sij ,  n.j =∑

p
i=1 sij           

                                             

where there are p available nominal values, i.e., t1, t2,…, tp, for attributes i and j, skl is the number of attributes 

of node i takes value tk and node j takes value tl, k, l= 1, 2, . . . , p.  

Jaccard coefficient measure is (Zhang, 2015b) 

 

rij=(e-(c+b))/(e+c+b)   i, j=1, 2,…,m 
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where -1≤rij≤1, c is the number of node pairs of 1 for attribute i but not for j; b is the number of node pairs of 1 

for attribute j but not for i; e is the number of node pairs of 1 for both attribute i and attribute j. 

Between-node similarity matrix, r=(rij)m×m, is a symmetric matrix, i.e., r=r’. In this algorithm, whether a 

node vk can connect to vi or not, depending on the similarity between vk and vi, the similarities between vi and 

its adjacent nodes, the similarities between vk and the adjacent nodes of vi, and the degree of node vi, and vice 

versa. The procedures of the algorithm for prediction of missing connections are as follows. 

(1) For each node vi, i=1, 2,…,m, and vjSi={vk|dik=1}, calculate mean similarity between vi and vjSi, 

and mean similarity of vjSi, 

 

            i_mean=mean rij      vjSi 

        i_adj_mean=mean rkj     vkSi, vjSi 

 

(2) For a node vi, i=1, 2,…,m, the nodes vjSi, and the node vkSi, k=1, 2,…,m. First, calculate the mean 

similarity of between vk and vjSi 

 

            k_i_adj_mean=mean rkj      vjSi 

 

then calculate the similarity win 

             

            zki=(rki - i_mean)+(1-)(k_i_adj_mean - i_adj_mean) 

 

where vkvi, dki=0, and  is the importance weight of node vi against its adjacent node set Si in determining 

whether the node vk can connect to the node vi or not, 01. Reverse vk and vi, and repeat the step (1) and (2), 

calculate zik.  

(3) Calculate zik=zki ni/(nk+ni)+ziknk/(nk+ni), where ni is the degree of node vi, i, k=1, 2,…,m; vkvi, dki=0. 

The weights, ni/(nk+ni) and nk/(nk+ni), are given because the nodes of greater degree are generally more 

important (Barabasi and Albert, 1999; Zhang and Zhan, 2011; Huang and Zhang, 2012; Zhang, 2012c; Li and 

Zhang, 2013), and the calculation results on the nodes of greater degree are more statistically confident. 

Finally, for zik0, calculate yik=zik/2, to achieve the averaged similarity win, which represents an averaged 

similarity win of a predicted missing connections against existing connections of the two nodes to be 

connected. 

(4) Rank predicted node pairs from the larger yik to small ones. The predicted connections with the larger 

yik have higher confidence degree. 

(5) Once some of the predicted connections are confirmed by observations, the adjacency matrix d=(dij), 

can be revised; return step (1) to start new round of prediction. 

The following are Matlab codes of the algorithm 

 

%Reference: Zhang WJ. 2015. Prediction of missing connections in the network: A node-similarity based algorithm.  

%Selforganizology, 2(4): 91-101 

raw=input('Input the file name of raw data (e.g., raw.txt, raw.xls, etc. The matrix is z=(zij)mn, where m is total number of nodes, 

n is the number of attributes ): ','s'); 

adj=input('Input the file name of adjacency matrix or its two-array form (e.g., adj.txt, adj.xls, etc. Adjacency matrix is 

d=(dij)mm, where m is the number of nodes in the network. dij=1, if vi and vj are adjacent, and dij=0, if vi and vj are not 

adjacent; i, j=1,2,…, m; two array form of adjacency matrix, the 1st column is from nodes and 2nd column is to nodes.): ','s'); 

choice=input('Input a number to choose similarity measure (1: Pearson linear correlation; 2: Cosine measure; 3: (Negative) 
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Euclidean distance; 4: Contingency correlation; 5: Jaccard coefficient): '); 

alpha=input('Input a weight between 0 and 1 for importance of a node to be connected to against its adjacent nodes (e.g., 0.5, etc. 

weight=1, means absolute importance of a node and no function of its adjacent nodes): '); 

raw=load(raw); m=size(raw,1); n=size(raw,2); 

adj=load(adj); 

if (size(adj,2)==2) 

nn=size(adj,1); 

adjj=zeros(m); 

for i=1:nn 

adjj(adj(i,1),adj(i,2))=1; 

adjj(adj(i,2),adj(i,1))=1; 

end 

adj=adjj; 

end 

r=zeros(m); 

for i=1:m-1 

for j=i+1:m  

ix=raw(i,:); jx=raw(j,:); 

if (choice==1)    

str='Pearson correlation'; 

ixbar=mean(ix); 

jxbar=mean(jx); 

aa=sum((ix-ixbar).*(jx-jxbar)); 

bb=sum((ix-ixbar).^2); 

cc=sum((jx-jxbar).^2); 

r(i,j)=aa/sqrt(bb*cc);      

end 

if (choice==2)    

str='Cosine measure'; 

aa=sum(ix.*jx);         

bb=sum(ix.^2); 

cc=sum(jx.^2); 

r(i,j)=aa/sqrt(bb*cc);  

end 

if (choice==3) 

str='(Negative) Euclidean distance'; 

r(i,j)=-sqrt(sum((ix-jx).^2)); 

end 

if (choice==4) 

str='Contingency correlation'; 

xx=[ix;jx]; 

pn=1;  

tt(1)=xx(1);  

for kk=1:max(size(xx)) 

jj=0; 

94



Selforganizology, 2015, 2(4): 91-101 

 IAEES                                                                                     www.iaees.org

for ii=1:pn  

if (xx(kk)~=tt(ii)) jj=jj+1; end;  

end  

if (jj==pn) pn=pn+1;tt(pn)=xx(kk); end; 

end 

for kk=1:pn 

for jj=1:pn  

temp(kk,jj)=0; 

for ii=1:max(size(ix))  

if ((ix(ii)==tt(kk)) & (jx(ii)==tt(jj))) temp(kk,jj)=temp(kk,jj)+1; end; end           

end; end 

for kk=1:pn 

pp=0; 

for jj=1:pn pp=pp+temp(kk,jj); end 

ni(kk)=pp;  

end 

for kk=1:pn 

pp=0; 

for jj=1:pn pp=pp+temp(jj,kk); end 

nj(kk)=pp;  

end 

summ=0; 

for kk=1:pn 

summ=summ+ni(kk); 

end; 

xsquare=0; 

for kk=1:pn  

for jj=1:pn  

if (ni(kk)==0 | nj(jj)==0) continue; end 

xsquare=xsquare+temp(kk,jj)*temp(kk,jj)/(ni(kk)*nj(jj));  

end; end 

xsquare=summ*(xsquare-1);                      

r(i,j)=2*sqrt(xsquare/(summ*(pn-1)))-1;       

end 

if (choice==5) 

str='Jaccard coefficient'; 

bb=sum((ix==0) & (jx~=0)); 

cc=sum((ix~=0) & (jx==0)); 

dd=sum((ix~=0) & (jx~=0)); 

r(i,j)=(dd-(cc+bb))/(dd+cc+bb);    

end 

r(j,i)=r(i,j); 

end; end 

fprintf('\nPredicted potential connections, similarity win, and similarity\n') 

disp('   Node     Node    Similarity win   Similarity') 
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nn=0; 

res=zeros(m*m,3); 

ilinkmean=zeros(1,m); inlinkmean=zeros(1,m);  

num=zeros(1,m); nu=zeros(1,m); 

for i=1:m 

nu(i)=0; 

ilinkmean(i)=0;     

for j=1:m  

if (i==j) continue; end; 

if (adj(i,j)~=0)  

nu(i)=nu(i)+1; 

num(nu(i))=j; 

ilinkmean(i)=ilinkmean(i)+r(i,j); 

end; end;  

ilinkmean(i)=ilinkmean(i)/nu(i);  

inlinkmean(i)=0;  

if (nu(i)>1)   

for j=1:nu(i)-1  

for k=j+1:nu(i) 

if (k==j) continue; end 

inlinkmean(i)=inlinkmean(i)+r(num(j),num(k));  

end; end;  

inlinkmean(i)=inlinkmean(i)/((nu(i)^2-nu(i))/2); end 

if (nu(i)==1)  

for j=1:m 

if (adj(i,j)~=0) inlinkmean(i)=r(i,j); end  

end; end 

jinlinkmean=zeros(1,m); 

for j=1:m 

if ((j==i) | (sum(j==num)==1) | (adj(i,j)~=0)) continue; end 

jinlinkmean(j)=0; 

for k=1:nu(i) 

jinlinkmean(j)=jinlinkmean(j)+r(j,num(k)); 

end 

jinlinkmean(j)=jinlinkmean(j)/nu(i);  

z=alpha*(r(i,j)-ilinkmean(j))+(1-alpha)*(jinlinkmean(j)-inlinkmean(j)); 

nn=nn+1; res(nn,1)=i; res(nn,2)=j; res(nn,3)=z;  

end; end 

ress=zeros(m*m,4); 

mm=0; 

for i=1:m-1 

for j=i+1:m 

for k=1:nn 

if ((res(k,1)==i) & (res(k,2)==j)) mm=mm+1; ress(mm,4)=r(i,j); ress(mm,1)=i; ress(mm,2)=j; 

ress(mm,3)=ress(mm,3)+res(k,3)*nu(i)/(nu(i)+nu(j)); end; 
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if ((res(k,1)==j) & (res(k,2)==i)) ress(mm,3)=ress(mm,3)+res(k,3)*nu(j)/(nu(i)+nu(j)); end 

end; end; end 

ress(:,3)=round(ress(:,3)/2*10000)/10000; 

ress(:,4)=round(ress(:,4)*10000)/10000; 

iress=zeros(mm,4); 

id=0; 

for i=1:mm 

if (ress(i,3)>=0) id=id+1; iress(id,:)=ress(i,:); end 

end 

ires=sortrows(iress(1:id,:),-3); 

disp([ires]) 

 

Table 1 Predictions of connections between 54 races and populations under different . 

=0 (177 predicted connections) =0.5 (161 predicted connections) =1 (144 predicted connections) 

The first 

ten 

predictions 

Node Node Simil. Win Simil. Node Node Simil. Win Simil. Node Node Simil. Simil. 

36 47 0.2046 0.5261 19 21 0.1888 0.5132 19 21 0.2352 0.5132 

36 45 0.1969 0.5253 12 21 0.1655 0.4229 12 21 0.1963 0.4229 

23 39 0.1938 0.5064 36 47 0.1608 0.5261 18 21 0.1854 0.3973 

33 47 0.1879 0.5082 33 47 0.1542 0.5082 19 20 0.1766 0.3854 

4 8 0.1825 0.4208 23 39 0.1502 0.5064 18 20 0.1613 0.3457 

23 32 0.1682 0.4068 36 45 0.1485 0.5253 7 29 0.1601 0.4984 

36 53 0.1584 0.5198 19 20 0.1458 0.3854 5 21 0.15 0.3177 

9 10 0.1576 0.4977 4 8 0.1456 0.4208 11 21 0.1471 0.3115 

1 8 0.149 0.4824 18 21 0.1417 0.3973 5 20 0.1458 0.3088 

10 21 0.1439 0.2564 14 21 0.139 0.3069 12 20 0.1445 0.3112 

The last 

ten 

predictions 

17 26 0.0085 0.1317 3 21 0.0089 0.0669 4 17 0.0086 0.4443 

18 46 0.0051 0.3086 18 47 0.0075 0.3548 12 26 0.0078 0.2327 

15 45 0.0037 0.3155 1 31 0.0072 0.3487 15 48 0.0069 0.3774 

10 29 0.0035 0.3364 7 20 0.007 0.0046 3 6 0.0059 0.0165 

31 32 0.0032 0.4706 10 24 0.0065 0.2771 25 30 0.004 0.3044 

18 54 0.0031 -0.0094 19 24 0.0063 0.2838 37 54 0.0037 0.0746 

1 17 0.0013 0.3344 4 18 0.0058 0.3573 31 54 0.0031 0.069 

11 32 0.0008 0.1182 3 7 0.0043 0.2998 18 35 0.0019 0.387 

6 24 0.0004 0.0246 15 37 0.0034 0.2005 32 42 0.0015 0.4077 

43 54 0.0003 -0.0906 18 37 0.0018 0.2065 4 29 0.0002 0.1191 

Node IDs from 1 to 54 represent Lahu-China, Dai-China, Yao-China, Guangdong Han-China, Dulong-China, Buyi-China, Thais, Yi-China, Hunan 

Han-China, Southern Han-China, Singapore Han-Singapore, Pumi-China, Shanghai Han-China, Liaoning Han-China, Shegyang Han-China, Northwest 

Han-China, Northern Han-China, Manchu-China, Japanese, Hokkaido-Japan, Uighur-China, Kazak-China, Siberian Nivkhs population, Siberian Udegeys 

population, Siberian Koryaks population, Siberian Eskimo, Siberian Chukchi population, South American Indians Ticuna, South American Indians 

Terena, Siberian Evenki population, Siberian Kets population, USA whites, Spanish, German, Romanians, Bulgarian, Greek, Polish, Turks, Macedonians, 

Israeli Arabs, Iranian Jews, Ashkenazi Jews-Germany, Libyan Jews, Moroccan Jews, Ethiopian Jews, Native population-Australia’s central desert, 

Yuendumu Native population-Australia, Kimberley native population-Australia, Cape York native population-Australia, North American blacks, and  

South African blacks.  
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3 Application Example 

3.1 Analysis of 54 human races and populations and 14 common HLA-DRB1 alleles 

Data of the world’s 54 human races and populations (nodes) and 14 common HLA-DRB1 alleles (attributes) 

(5414; HLA_DRB1.txt; supplementary material) are from Jia (2001) (Zhang and Qi, 2014). In addition, an 

adjacency matrix (5454; HLA_DRB1_adj.txt; supplementary material) and its two array form (2, 

HLA_DRB1_adj_twoarrayform.txt; supplementary material) for the network of 54 human races (nodes), 

derived from linear correlation analysis, is given. In present example, I use Pearson correlation measure. 

Some results are given in Table 1.  

 

Table 2 Predictions of connections between 12 Chinese populations under different . 

=0 (25 predicted connections) =0.5 (24 predicted connections) =1 (23 predicted connections) 

Node Node Simil. Win Simil. Node Node Simil. Win Simil. Node Node Simil. Win Simil. 

3 9 0.1952 0.2517 7 9 0.2172 0.5798 7 9 0.2577 0.5798

4 9 0.1878 0.3699 6 12 0.2072 0.58 6 12 0.2379 0.58 

6 9 0.184 0.4077 5 9 0.1816 0.41 5 12 0.1795 0.4577

5 9 0.1839 0.41 6 9 0.1812 0.4077 5 9 0.1794 0.41 

5 12 0.1794 0.4577 5 12 0.1795 0.4577 6 9 0.1784 0.4077

7 9 0.1766 0.5798 4 9 0.1748 0.3699 10 12 0.173 0.4036

6 12 0.1765 0.58 10 12 0.1629 0.4036 4 9 0.1619 0.3699

2 9 0.1642 0.345 10 11 0.1536 0.4698 10 11 0.1566 0.4698

10 12 0.1528 0.4036 3 9 0.1527 0.2517 4 12 0.1461 0.3966

10 11 0.1506 0.4698 7 12 0.1326 0.2787 7 12 0.1239 0.2787

8 11 0.1467 0.32 2 9 0.1318 0.345 7 11 0.1198 0.3295

7 12 0.1413 0.2787 4 12 0.1318 0.3966 8 11 0.1164 0.32 

8 12 0.1384 0.183 8 11 0.1315 0.32 4 11 0.1162 0.4832

7 11 0.1367 0.3295 7 11 0.1283 0.3295 3 9 0.1101 0.2517

4 11 0.1302 0.4832 4 11 0.1232 0.4832 2 9 0.0995 0.345 

4 12 0.1176 0.3966 8 12 0.1099 0.183 8 12 0.0813 0.183 

2 10 0.1159 0.4808 3 12 0.095 0.2429 3 12 0.0762 0.2429

3 12 0.1138 0.2429 3 11 0.0754 0.3054 3 11 0.0441 0.3054

3 11 0.1067 0.3054 2 10 0.0686 0.4808 9 11 0.0402 0.3214

1 9 0.1046 0.3837 1 9 0.059 0.3837 2 6 0.036 0.5367

2 6 0.0695 0.5367 2 6 0.0528 0.5367 9 12 0.0321 0.1284

2 5 0.0662 0.3984 9 11 0.0401 0.3214 2 10 0.0214 0.4808

9 12 0.0457 0.1284 9 12 0.0389 0.1284 1 9 0.0134 0.3837

9 11 0.04 0.3214 2 5 0.0166 0.3984

2 12 0.0342 0.004 

Node IDs from 1 to 12 represent Tibetan, Uighur, Kazak, Xingjiang Han, Taiwanese, Hong Kong, Northern Han, Shanghai Han, Hunan Han, Manchu, 

Buyi, and Dai. Successfully predicted missing connections are in bold. 
 

 

Using a finer adjacency matrix (5454; HLA_DRB1_adj_Finer.txt; supplementary material) as the 

“complete network”, it is found that there are 46 missing connections in the incomplete network, 

HLA_DRB1_adj.txt. Using Pearson correlation, 32 (69.6%), 30 (65.2%), and 30 (65.2%) connections of 

missing connections for =0, 0.5, 1 respectively, are successfully predicted. These connections are from 177, 

98



Selforganizology, 2015, 2(4): 91-101 

 IAEES                                                                                     www.iaees.org

161, and 144 predicted connections for =0, 0.5, and 1 respectively. In addition, there are known 255 

connections in the incomplete network, HLA_DRB1_adj.txt (potentially maximal 1431 connections). Thus 

only 12.4% (177/1431), 11.3% (161/1431), and 10.1% (144/1431) of possible connections are needed to be 

screened for further confirmation respectively, which greatly reduce the cost for experiments and observations. 

3.2 Analysis of 12 Chinese human populations and 17 HLA-DQB1 alleles 

Data of the 12 Chinese human populations (nodes) and 17 common HLA-DQB1 alleles (attributes) (1217; 

HLA_DQB1.txt; supplementary material) are from Geng et al. (1995), Chang et al. (1997), Mizuki et al. (1997, 

1998), et al. An adjacency matrix (1212; HLA_DQB1_adj.txt; supplementary material) for the network of 12 

human populations, derived from linear correlation analysis, is given. Use Pearson correlation measure and 

results are given in Table 2.  

Using a finer adjacency matrix (1212; HLA_DQB1_adj_Finer.txt; supplementary material) as the 

“complete network”, it is found that there are 12 missing connections in the incomplete network, 

HLA_DQB1_adj.txt. Using Pearson correlation, 7 (58.3%), 7 (58.3%), and 7 (58.3%) connections of missing 

connections for =0, 0.5, 1 respectively, are successfully predicted. In addition, these connections are from 25, 

24, and 23 predicted connections for =0, 0.5, and 1 respectively.  

 

4 Discussion   

It should be noted that the “complete networks” (with finer adjacency matrices) are defined in a relative sense. 

More complete networks may exist. Thus the percentage of successfully predicted missing connections may 

increase with further fining of networks.  

    In present study, we set zik0, to calculate yik=zik/2. However, the threshold can be lowered, for example, 

zik-h, to calculate yik=zik/2, where h>0 is a constant. By doing this, the percentage of successfully predicted 

connections can be further increased (e.g., 70%, 80%, etc). But at the same time, the percentage of possible 

connections needed to be screened for further confirmation rises also, which will increase the cost for 

experiments and observations. Therefore, a compromise between the two percentages is unavoidable and a 

perfect prediction method is almost impossible. 

The present algorithm is based on observed connections and the attributes of nodes. Two extreme 

situations can be reached by adjusting the . =0 (situation A) means only the similarities between a node (vk) 

and the adjacent nodes of another node (vi) being prepared to connect to vk are considered; =1 (situation B) 

means the comparison of the similarity between a node (vk) and another node (vi) being prepared to connect to 

vk, and the similarities between vi and its adjacent nodes, will be made. In practical applications, situation A 

sometimes occurs. If the mechanism for relationship between node-similarity and connection likelihood is 

unknown or unsure, =0 is mostly suggested for use. In addition, (negative) Euclidean distance measure can 

be used in specific cases only, for example, node attributes are spatial coordinates. 

The present algorithm is useful to not only the structurally stable networks but also evolving, structurally 

unstable networks. For structurally stable networks, Lü et al. (2015) proposed a prediction method, structural 

perturbation method, which was reported to be superior to the known hierarchical structure method (Clauset et 

al., 2008).  

The effectiveness of the present algorithm depends on node attributes and similarity measures. Therefore, 

future works to improve the present algorithm should mainly focus on (1) selection of the key attributes of 

nodes in determining connection likelihood, and (2) addition of more specific similarity measures in the 

algorithm. 

Making a little revision on the Matlab codes, the present algorithm can be used to predict which nodes 

might be connected by a new added node. Further, it can be used to describe network generation and evolution. 
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