Selforganizology, 2015, 2(4): 102-114

Article

Semantics of cardinality-based service feature diagrams based on
linear logic

Ghulam Mustafa Assad', Muhammad Naeem?, Hafiz Abdul Wahab?, Faisal Bahadur', Sarfraz Ahmed*
'Department of Information Technology, Hazara University, Mansehra, Pakistan

*Department of Information Technology, Abbottabad University of Science and Technology, Abbottabad, Pakistan
3Department of Mathematics, Hazara University, Mansehra, Pakistan

“Department of Mathematics, Abbottabad University of Science and Technology, Abbottabad, Pakistan

E-mail: gm_assad@yahoo.com, naeem@aust.edu.pk, wahabmaths@yahoo.com, msosfaisal@gmail.com, surfy001@yahoo.com

Received 23 June 2015; Accepted 1 August 2015; Published online 1 December 2015
[@her |

Abstract

To provide efficient services to end-user it is essential to manage variability among services. Feature modeling
is an important approach to manage variability and commonalities of a system in product line. Feature models
are composed of feature diagrams. Service feature diagrams (an extended form of feature diagrams) introduced
some new notations to classical feature diagrams. Service feature diagrams provide selection rights for variable
features. In our previous work, we introduced cardinalities for the selection of features from a service feature
diagram which we call cardinality-based service feature diagrams (CSFD). In this paper, we provide semantics
to CSFDs. These semantics are backed by the formal calculus of Linear Logic. We provide rules to interpret
CSFDs into linear logical formula. Our results show that the linear formulas of CSFDs give the same results as
expected from the CSFDs.

Keywords feature modelling; service feature diagrams; software product line; variability and similarity

management; cardinality-based service feature diagrams.

Selforganizology

ISSN 2410-0080

URL: http://www.iaees.org/publications/journals/selforganizology/online-version.asp
RSS: http://www.iaees.org/publications/journals/ selforganizology /rss.xml

E-mail: selforganizology@iaees.org

Editor-in-Chief: WenJun Zhang

Publisher: International Academy of Ecology and Environmental Sciences

1 Introduction

Software product line engineering is one of the ways used by the researchers in industry to automate product
development of the product line. One of the challenges for product development is the use of variability and
commonality among the features of products. Feature modelling is established notation to deal with such type of
challenges (Batory et al., 2006). Feature diagrams were introduced as a part of the Feature-Oriented Domain
Analysis (FODA) in (Kang et al., 1990). Feature diagrams are used in number of domains including telecom
systems (Griss et al, 1998), template libraries (Czarnecki and Eisenecker, 2000), network protocols (Barbeau and
Bordeleau, 2002), and embedded systems (Czarnecki et al., 2002).

TIAEES Wwww.iaees.org



Selforganizology, 2015, 2(4): 102-114 103

Feature models are, hierarchical models to record commonalities and variabilities among the products of a
product line. In the model, each characteristic relevant to the problem space is said to be a feature. So in this
sense, a feature is called a characteristic of a system. We can say that a feature can be a requirement, a quality, a
technical function or a non-functional characteristic (Czarnecki and Kim, 2005). For example, colour, tires, and
doors are features of a product line of a car.

The original feature diagrams have many extensions proposed by different authors. For example, the first
extension of FODA diagrams is Feature-RSEB, proposed in (Griss et al., 1998). The second extension of FODA
diagrams is Cardinality-based feature diagrams, proposed in (Czarnecki, 2005). Another extension of FODA
diagrams is service feature diagrams (SFD), proposed by Naeem in (Nacem and Heckel, 2011).

This paper is an extension of our previous work in (Assad et al, 2015). In this paper, we argue to use
cardinalities in service feature diagrams; we believe that the full benefit of service feature diagrams can be
obtained by using cardinalities. CSFD, not only, reduces the feature types of SFD, but subsumes all the features
of SFD, as well. Furthermore, we provide formal semantics to the idea of CSFD proposed in (Assad et al., 2015).
These formal semantics are backed by the sequent calculus of Linear Logic (Girard, 1987, 1995; Troelstra,
1992).

The rest of the paper is arranged as follows: Section 2 elaborates on the information which is necessary to
understand the technical contents of the paper, while in Section 3 we provided the semantics of our proposed

scheme of CSFD in Linear Logic. Section 4 validates our scheme, and section 5 concludes the paper.

2 Background and Related Approaches

2.1 Classical feature diagrams

Usually, feature diagrams represent hierarchies of common and variable features in software product lines (Kang
et al, 1990). Here, we use them to describe variability of services building on the notation provided in (Czarnecki

and Eisenecker, 2000). For example, Fig. 1 shows a feature diagram D for an online travel agent.

Travel Agent

Legend

- (LO tional /&\Alternat'we— — > Requires
[Eeservation | L‘anspmﬂ Payment P »Rey

|
; //\ il\-hndatory/‘\ Or & — 3 Fucludes
| Hotel | IEhght| ! |Credit Card || Bank Transfer |
A |

Fig. 1 Feature diagram of an on-line travel agent service.

An instance of D is a subset of features that is consistent with the constraints specified by D. For example, a

valid purchase from the travel agent shown in Fig. 1 must obey the following rules:

1. The root feature is always selected

2. If a feature is selected, its parent must also be selected

3. Ifa feature is selected, all the mandatory features of its And-group are selected

4. If a feature is selected, exactly one feature of its Alternative-group must be selected

5. Ifa feature is selected, at least one feature of its Or-group must be selected

6. When two features are linked by requires constraint, the target feature must be included whenever the
source is

TIAEES Www.iaees.org



104 Selforganizology, 2015, 2(4): 102-114

7. A source and target of excludes constraint (not shown in Fig. 1) cannot be selected in an instance.

Thus, an instance of D is given by {TA, Res, H, Pay, BT}(for brevity, we use the underlined characters of
the feature name in instances and logical formulas). A declarative way of defining the notion of instance is by
means of Propositional Logic (Czarnecki and Wasowski, 2007). For example, a propositional equivalent of the

feature diagram in Fig. 1 is:

(TA & Res) /\ (Res & (HVF)) /\ (Tr & TA) /\ (Tr > H) /\ (TA & Pay) /\ (cc

o (~ BTAPay)) /\ (BT & (~ CCAPay))

Valuations for which this formula is true characterise the valid instances. In our example, a possible instance is
the valuation that assigns true to {TA, Res, H, Pay, BT} and false to {F, Tr, CC}.

2.2 Cardinality-based feature diagrams

Cardinality-based feature diagrams uses multiplicities on features. Cardinality-based feature modelling is an
integration and extension of existing approaches. Czarnecki (Czarnecki and Kim, 2005) stated that a
cardinality-based feature model is a hierarchy of features where each feature has feature cardinality, i.e.,
cardinality-based feature diagrams put constraints on features, provides a lower and upper limit for the selection
of features.

Feature cardinality denotes the number of clones of sub-features which can be selected for a parent feature.
Cardinalities are shown as [m....n], where m and n denote minimum and maximum number of selection for a
feature, respectively. Feature with cardinality [1...1] are called mandatory, whereas features with cardinality
[0...1] are called optional. Group cardinality is an interval of the form [m—n], wheren € ZA 0 <m <n <Kk,
where k is the number of features in the Group (Czarnecki and Kim, 2005).

Fig. 2 depicts a feature diagram showing seating capacity of a car manufacturer using cardinality-based
feature diagrams. A possible instance of this feature diagram is {SC, F, LB, PS, R, H}.

SeatmpCapacity
d--")-- -H-H""'--
1.l = e 1
Front Rear
Ed Rear|
A~ 1.2 A~ 1.1

PowerSeat | with without

LiverBased
|_ = | Headrest | [Headrest

Fig. 2 Cardinality-based feature diagram showing seats of a car.

2.3 Service feature diagrams

Service feature diagrams introduced some new type of notations to the classical feature diagrams in the context
of service specification and matching. These new notations include:

1. Asolid edge: This edge is used when the selection of features is given to the requestor.

2. A dashed edge: A dashed edge is used when the selection rights of features are left with provider to choose

from.

IAEES WWWw.iaees.org



Selforganizology, 2015, 2(4): 102-114 105

3. A resource feature: This feature can only be used once; whereas the classical representation is used for
resource feature.

4. A shareable feature: This feature can be used multiple times. A rectangular box with gray background is
used to represent shareable features.

Table 1 Notations used in service feature diagrams.

Features Feature Representation Comments

Mandatory A Feature B must be selected if A is, in an instance

Feature B may be selected or rejected with A in an

5]

instance depending on requester’s choice.

Optional
Feature B may be selected or rejected with A in an
A |— ——-{B instance depending on provider’s choice.
Exactly one feature from the group of B1,...,Bn must be
e selected with A in an instance based on the requestor’s

-

preference.

Alternative-gr

oup
Exactly one feature from the group of B1,...,Bn must be
selected with A in an instance based on the provider’s
preference.

At least one feature from the group of B1,...,Bn must be
selected with A in an instance based on the requestor’s
preference.

Or-group

At least one feature from the group of B1,...,Bn must be
selected with A in an instance based on the provider’s

preference.

. Target feature B must be selected if the source feature A
Implies AL —eaoo 5 B

is.

Exclude Ak——-2B Feature A and B cannot be selected in one instance.

Using the notations discussed above a service feature diagram for an entertainment system of a car
manufacturer is shown in Fig. 3 below.

IAEES WWWw.iaees.org



106

Selforganizology, 2015, 2(4): 102-114

Entertamment

L~
-"1.""-..--'
|£mmm:1 | |£ag1iu | CD Player
- =~
_ - I -
ALPINE(Rd) | | SONY(Rd) | [ ALPINE(CD) | | SONY(CD)

Fig. 3 SFD showing entertainment system of a car manufacturer.

2.4 Cardinality-based service feature diagrams

A cardinality-based service feature model is a hierarchy of features, where each feature has feature cardinality
(Assad et al, 2015). A feature cardinality is an interval of the form [m..n], where m and n both are real number. A
feature with cardinality [1...1] referred as “Mandatory” whereas feature with cardinality [0...1] referred as
“Optional”. A group cardinality is an interval of the form [m...n], where both m and n are real numbers and 0 <

m <n <k, where k is the number of features in the group. Group cardinality denotes how many group members

can be selected.

Table 2 Notations used in cardinality-based service feature diagrams.

Features

Graphical Representation

Comments

Single Feature

[1.1][0.1]

A B

If feature B is mandatory sub-feature then it must
be selected on selection of A, otherwise it may be
selected or rejected based on the requestor’s

preference in an instance.

A o] B

A feature B may be selected depending on
provider’s preference in an instance, if A is

selected.

Group Feature

If the feature A is selected then features B,, to B,
must be selected from this group in an instance,
where 0 < m < n < k. This selection of features
should be decided on the basis of requester’s

preferences.

If the feature A is selected then features B,, to B,
must be selected from this group in an instance,
where 0 < m < n < k. This selection of features
should be decided on the basis of provider’s

preferences.

The use of “Cardinality Based Service Feature Diagrams” simplifies the notations by

1. Eliminating the use of multiple feature types for representing alternative and or-group.

IAEES

WWWw.iaees.org



Selforganizology, 2015, 2(4): 102-114 107

2. Combines optional feature with requestor’s choice and mandatory.

We don’t need to be confused with filled and unfilled Circle as well as with filled and unfilled arcs.

2.5 Linear logic

Linear logic was proposed by Girard in (1987). In contrast to the Propositional Logic, Linear logic can

differentiate between the propositions which occurs multiple times from those which occurs once, in linear

logical formula, i.e., A @ A # A, where A is a proposition in Linear Logic.

Linear logic provides three types of connectives: Multiplicative connectives, additive connectives, and
exponential connectives. These connectives are used to form the fragments of Linear Logic, while the Classical
Linear Logic (CLL) contains all the connectives of Linear Logic. The service feature diagrams can be
transformed to Linear Logic. The encoding of a service feature diagram to linear logical formula gives the same
result as expected from diagram. Following are the concepts that will be used in this paper. Two propositions A
and B are representing features here.

1. Multiplicative Conjunction (&®). A linear formula A @ B shows the selection of both features A and B
(Naeem, 2012).

Additive Conjunction (&). A linear formula A & B is representing choice A or B (Naeem, 2012).

3. Linear Implication (—o). A linear expression A — B means that a feature B can only be selected if we have
already chosen the feature A. We use linear implication to impose the condition where we want to select a
feature before the other feature. For example, a sub-feature can only be selected if its parent is already
chosen (Naeem, 2012).

4. Storage Operator (!). It is used to copy a linear proposition. A linear expression ! A states the selection of a
feature A as many times as required (Naeem, 2012).

Inference system

The basic linear inference system is a sequent, written in Gentzen’s style (Cosmo and Miller, 2010). A sequent
contains two sequences separated by turnstile - (also read as yields or derives). If I and A are the multi-sets of
the finite sequences of formulas then I' - A represents a sequent in Linear Logic, which states that the
multiplicative conjunction of the formulas inside I" derives the multiplicative disjunction of the formulas in A
(Lincoln et al, 1992).

An inference rule can be written as

Hypothesisl Hypothesis2
Rule

Conclusion

In this rule, hypotheses and conclusion are represented in the form of sequent, while Rule represents the name
of inference rule applied to Hypothesis1 and Hypothesis2 to get to the Conclusion (Naeem, 2012).

The deduction system of CLL consists of the basic rule and introduction rules for the connectives
described above (Girard, 1987; Troelstra, 1992; Cosmo and Miller, 2010). We have only one basic rule, i.e.,
the identity rule

which states that a formula A can be derived from the assumption of a formula A. Linear propositions can be
moved from one side of a sequent to the other, as shown by the following rules

IAEES WWWw.iaees.org



108 Selforganizology, 2015, 2(4): 102-114

The multiplicative conjunction (&) has two introduction rules. First for introducing & on the left, second

for introducing & on the right of a sequent:

ILA,BFA TFA,A A A
| 5 R R®
I,A®B F A T A®B, A, A’

The additive conjunction (&) have two-introduction rules for the left and the right of a sequent, as shown
below
ILBiFA '-AA I'-B,A
L& - R®
I,Bi&B, FA I'- A®B, A

The linear implication —o also has two rules for introducing it on the left and right of the sequent

I'FA A I"FB,A IAFB, A
L—o R—0 o
I' A=B,I"F A A I' A—B, A

In CLL, weakening and contraction rules are only allowed for the propositions having modalities.

I'-A ILIAJJARA

The !-modality can be introduced on the left and the right side of a sequent, as shown by the following
rules

3 Semantics of Cardinality-based Service Feature Diagrams

A cardinality-based service feature diagram can be encoded into a logical formula which will give the same
result as expected from the diagram. Table 3 shows the rules we provided to interpret a CSFD into Linear
Logic. CSFD offers two types of relationship of feature with its sub features: 1) Single feature; 2) Group
feature. Single feature is either mandatory or an optional feature, while the Group feature is the combination of

IAEES WWWw.iaees.org



Selforganizology, 2015, 2(4): 102-114

109

multiple features.

Table 3 Encoding of different feature types in linear logic.

Rule Graphical Linear Formulae Comments
Representation
LF( @) =a Feature a being resource means that
Rule::Res IEI we can derive a from a.
Feature a being shareable means
Rule::Share IEI LE( [a} )=la that we can derive alJ...Ja from !a.
Here X is a sub tree which is
Rule::Man M X LE@ ® (LHo & mandatory for feature a, i.e., X must
(LF (a) — LF(X))) be selected with feature a.
Here sub tree X is optional for a,
LF@) ® (L) ® i.e., X may be selected or rejected
Rule:: 0 1 (LF(a) — (LF(X) & | with feature a, depends upon
ule::Optr X 1 , . .
<:: >_ P, LF(X)))) requestor’s choice. If a is selected,
one can derive both LF(X) and
LF(X) <
Here sub tree X is optional for a,
0.1 LF@) ® (L) ® i.e., X be selected or rejected with
®_ TT T4 feature a, depends upon provider’s
Rule::Optp (LF(a) — (LFX) ®

LF(X)M))

choice. If x is selected, one can

derive both LF(X) & LF(X)+

Rule::Groupg

m..n

X...X

LF(o) ® (LF(o) ®
(LF((I) _o(&i=1 to e(&j=1
w  KLF(X))

LesLF(X0) M)

® &

The group of sub features Xi,.....,Xk

allow for requestor to make
selection between all subsets of
features in the range from m to n,
their

and deselecting respective

complements.

Rule::Groupp

LF(a) ® (LF(o) ®
(LF(0) =(Di=1 10 < (Bj-1

o k(LF(X)

LesLF(X0) )

® &

The group of sub features Xi,.....,Xk

allow for Provider to make
selection between all subsets of
features in the range from m to n,
their

and deselecting respective

complements.

IAEES

WWWw.iaees.org




110 Selforganizology, 2015, 2(4): 102-114

The 1st column of Table 3 shows the rule names used for the encoding. The 2nd column shows the
graphical representation of the rule. The 3™ column shows the linear formulas of different CSFDs while the 4™
column explains the encoding.

A diamond is used as a meta variable for representing features. LF(o) shows the meta proposition that
will be replaced by a for a being resource and by !a for a being shareable feature. The linear implication a — b
is used to express that we have to choose feature a to select feature b. This means that a gets consumed once b
is obtained, the extra copy of the parent feature is used to keep the intermediate feature in possible instance
formula. For example a ® (a ® (a — b)) explain that it is required to choose feature a for the selection of the
feature b. To encode a CSFD, it is required to keep three copies of parent feature before the linear implication.

The additive conjunction (a & b) represents the alternative occurrences of features a and b, depends on
requestor choice. The additive disjunction (adb) represents the alternative occurrences of features a and b,

depends on provider choice. The subscripts (i=1 to ¢) denotes the number of features to be selected, where e is
an element of a set t which represents cardinalities (m..n). I represents the set of rejected features from the set
.
s={1,2,....k} t= {t: m<t<n}
e =an element of t 1= {l: les/\ 1#}

Let us explain the concepts discussed so far with the help of a general example, where a feature a is a
parent feature of a group(R) of two sub-features b and ¢ the groups has [1..1] cardinality. The feature b also
represents a group(R) having two sub-features d and e, with [1..2] cardinality. The feature ¢ has a mandatory

sub-feature f and an optional sub-feature g, as shown in Fig. 4.

[1..1]

[1-2] [1..1] [0.1]

(a]  [e] [£]  L=]

Fig. 4 An Example Cardinality-Based Service Feature Diagram

The step wise encoding of the cardinality-based service feature diagram using the rules given in Table 3 is
shown below

1. LF(a) ® (LF(a) ® (LF(a) =((LF(b) ® LF(c)*) & (LF(b)*+ &® LF(c) ))))

2. a®(a®(a—((LF(b)®(LF(b)®(LF(b)—~((LF(d)@LF(e)*)&(LF(d)*@LF(e))&(LF(d)QLF(¢)) @ct @
- ®g4)))&(LF(b)*@LF(d)* @LF(e)* @ LF (c®(LF(c)®(LF(c)~((LF(HQLF(g))&(LF(H®LF(g))))
)

3. a®(@a®(a—((b&(b&(b—((d®e)&(d'@e)&(d®e)Dc @ ®g'))))& (b @d+ et @ (c@ (e (c—(f
® gH&(f ® 2))))))

The linear formula LF of Fig. 4 is

TIAEES Www.iaees.org



Selforganizology, 2015, 2(4): 102-114 111

LF=a®(a®(a—((b@(b&(b—=((dQe!)&(d' @e)&(dQe)@c- @ ®gh))))& (bR dL Qe @ ( & (c®(c—=(f ®
gH&(f @ 2)))))

Instance and instance formula

The diagrammatical representation of an instance of a feature diagram is called instance diagram (Naeem,
2012). An instance is defined as, a set of permissible selection of features from a feature diagram (Kang et al,
1990; Czarnecki and Eisenecker, 2000; Benavides et al., 2010). Instance diagram can be encoded into a logical
formula, called instance formula, which will give the same result as expected from the instance diagram. The
number of instance formulas of a CSFD depends on the level of variability captured. The CSFD must have at

least one instance formula. The set of instance formulas IF for Fig. 4 are

IF= { @@bRIQ R+ R ®gt), (1A ®e®c- R Qg!), (a®PRIReRc- QL Qgt),
(@b ®dL Pet®c@®fR(g&gt) ) }

Here the symbol | shows the rejection of a feature, the additive conjunction (g & gL) is used to show that the
selection or rejection of feature g depends upon requester’s choice, whereas for provider’s choice @ is use. All
these instances can be derived from linear formula LF of Fig. 4.

Note that rejection of a subtree X, leads towards the rejection of its sub features, that’s why in above
given formulas rejection of feature ¢ means rejection of its subfeatures f and g, similarly rejection of feature b

means rejection of its subfeatures d and e.

4 Validation
Validation of our work is based on derivation of instance formula IF from a linear formula LF of a feature
diagram with the help of the formal framework of Linear Logic. Let us consider an example where a feature a
is a parent feature of a group(R) of two sub-features b and ¢ having [1..1] cardinality. The feature b also has a
solitary feature d with [1..1] cardinality, as shown below in Fig. 5.

The linear formula LF and the set of instance formulas IF of this cardinality based service feature diagram
are

LF= a®(a(®a— (bQc@dH)&(b @ (c@(c@(c—d))))))

[F={( a®@b@c!®d+), (a®@b@c@d)}

a

[1..11/'/“}\

b c

[1..1]

Fig. 5 An Example CSFD for validation.

TIAEES Www.iaees.org



Selforganizology, 2015, 2(4): 102-114

112
The derivation of in instance formula IF from the Linear formula (LF) can be shown as LF ~ IF. This
derivation is obtained by using an online prover for linear logic called llprover (Tamura, 1995). We derive all
the instances from the corresponding formulas of the CSFD. The proof tree for the first instance formula of the
set of instance formulas is
——————————————————— id

b®ci®dL + bRct®dL

L—o

a®a® (a—((b®ct ®dH& (bt ®c®c®(c—~d))) + a®b®c'®d*

The proof tree for the second instance formula of the set of instance formulas is

------------------------ L®

bi,c,c®(c—d) F bikc®Rd
———————————————————————— L®

bi,c®c®(c—d) - bixcRd
————————————————————————— L®

bi®c®c®(c—-d) + bi®c®Rd

L—o

a,a—~((b®ct®d)&(b:®cR®c®(c—d))) + bi®cRd
R®

a,a,a—~((b®ci®d)&((hi®c®c®(c—-d))) + ak®bi®c®d
——————————————————————————————————————————————— L®

a,aQ (@~ ((b®ci®dH&(biR®cR®cR®(c—d))) + a®bi®c®d
——————————————————————————————————————————————— L®

a®a®(a—((b®ci®dH&(bi®cRc®(c—-d))) + a®Qbi®c®d

WWWw.iaees.org

IAEES



Selforganizology, 2015, 2(4): 102-114 113

5 Conclusions and Future Work

Service feature diagrams were proposed by Naeem in (Naeem and Heckel, 2011; Naecem, 2012). Our previous
paper (Assad et al, 2015) was the first step towards the development of a framework for the cardinality-based
service feature diagrams. In this paper, we have provided formal rules to interpret cardinality based service
feature diagrams into a linear logical formula. The encoding of cardinality based service feature diagrams to a
linear logical formula gives the same results as expected from diagram. We have also validated our work with
the help of examples given in Section 4. Our objective of formalizing Cardinality based service feature
diagrams in linear logic (Girard, 1987; Troelstra, 1992; Girard, 1995) has been achieved.

In future we are looking for developing a tool support for our proposed approach.

References

Assad GM, Naeem M, Wahab HA. 2015. Towards cardinality-based service feature diagrams. Computational
Ecology and Software, 5(1):

Barbeau M, Bordeleau F. 2002. A Protocol Stack Development Tool using Generative Programming.
Proceedings of the ACM Conference on Generative Programming and Component Engineering
(GPCE’02), Pittsburgh, Vol. 2487 of LNCS. 93-109, Springer-Verlag, Heidelberg, Germany

Batory D, Benavides D, Ruiz-Cortes A. 2006. Automated analysis of feature models: challenges ahead.
Communications of the ACM, 49(12): 45-47

Benavides D,Segura S,and RuizCort’es A. 2010. Automated analysis of feature models 20 years later: A
literature review. Information Systems, 35(6): 615-636

Cosmo R and Miller D. 2010. Linear Logic. In: The Stanford Encyclopedia of Philosophy (Zalta EN, ed)(Fall
2010 edition), USA

Czarnecki K, Bednasch T, Unger P, Eisenecker UW. 2002. Generative Programming for Embedded Software:
An Industrial Experience Report. Proceedings of the ACM Conference on Generative Programming and
Component Engineering (GPCE’02), Pittsburgh, Vol. 2487 of LNCS. 156-172, Springer-Verlag,
Heidelberg, Germany

Czarnecki K, Eisenecker UW. 2000. Generative Programming: Methods, Tools, and Applications, Addison-
Wesley, Boston, MA, USA

Czarnecki K, Helsen S, Eisenecker U. 2005. Formalizing Cardinality-based Feature Models and their
Specialization. Software Process Improvement and Practice. 10(1): 7-29

Czarnecki K, Kim CHP. 2005. Cardinality-Based Feature Modeling and Constraints: A Progress Report.
Proceedings of OOPSLA’05 Workshop on Software Factories, San Diego, California, USA

Czarnecki K, Wasowski A. 2007. Feature Diagrams and Logics: There and Back Again. Proceedinsg of
International Conference on Software Product Lines (SPLC’07). 23-34

Girard J-Y, 1987. Linear logic. Theoretical Computer Science, 50: 1-102

Girard J-Y. 1995. Linear Logic: Its Syntax and Semantics. In Proceedings of the Workshop on Advances in
Linear Logic (ALL’95), pages 1-42, New York, NY, USA

Griss M, Favaro J, d’Alessandro M. 1998. Integrating Feature Modeling with the RSEB. Proceedings of the
Fifth International Conference on Software Reuse (ICSR). 76-85, IEEE Computer Society Press, Los
Alamitos, CA, USA

Kang K, Cohen S, Hess J, Novak W, Peterson S. 1990. Feature-oriented Domain Analysis (FODA) Feasibility
Study. Technical Report, Carnegie-Mellon University Software Engineering Institute, USA

IAEES WWWw.iaees.org



114 Selforganizology, 2015, 2(4): 102-114

Lincoln P, John C. Mitchell, Andre Scedrov, and Natarajan Shankar. 1992. Decision problems for
propositional linear logic. Annals of Pure and Applied Logic, 56(1-3): 239-311
Naeem M, and Heckel R. 2011. Towards Matching of Service Feature Diagrams based on Linear Logic.

Proceedings of Workshops of SPLC.
Naeem M. 2012. Matching of Service Feature Diagrams using Linear Logic. PhD Dissertation. Department of

Computer Sciences, University of Leicester, UK
Troelstra AS. 1992. Lectures on Linear Logic. Center for the Study of Language and Information, Stanford,

CA, USA
Tamura N. 1995. User’s Guide of a Linear Logic Theorem Prover (llprover). Technical report, Faculty of

Engineering, Kobe University, Japan. Available online at http://bach.istc.kobe-u.ac.jp/llprover/

IAEES WWWw.iaees.org





