Home

Selforganizology, 2016, 3(1): 1-9
[XML] [EndNote] [RefManager] [BibTex] [ Full PDF (157K)] [Comment/Review Article]

Article

A random network based, node attraction facilitated network evolution method

WenJun Zhang
School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; International Academy of Ecology and Environmental Sciences, Hong Kong

Received 6 August 2015;Accepted 28 September 2015;Published online 1 March 2016
IAEES

Abstract
In present study, I present a method of network evolution that based on random network, and facilitated by node attraction. In this method, I assume that the initial network is a random network, or a given initial network. When a node is ready to connect, it tends to link to the node already owning the most connections, which coincides with the general rule (Barabasi and Albert, 1999) of node connecting. In addition, a node may randomly disconnect a connection i.e., the addition of connections in the network is accompanied by the pruning of some connections. The dynamics of network evolution is determined of the attraction factor Lamda of nodes, the probability of node connection, the probability of node disconnection, and the expected initial connectance. The attraction factor of nodes, the probability of node connection, and the probability of node disconnection are time and node varying. Various dynamics can be achieved by adjusting these parameters. Effects of simplified parameters on network evolution are analyzed. The changes of attraction factor Lamda can reflect various effects of the node degree on connection mechanism. Even the changes of Lamda only will generate various networks from the random to the complex. Therefore, the present algorithm can be treated as a general model for network evolution. Modeling results show that to generate a power-law type of network, the likelihood of a node attracting connections is dependent upon the power function of the node's degree with a higher-order power. Matlab codes for simplified version of the method are provided.

Keywords network evolution;node attraction;connection probability;disconnection.



International Academy of Ecology and Environmental Sciences. E-mail: office@iaees.org
Copyright © 2009-2024 International Academy of Ecology and Environmental Sciences. All rights reserved.
Web administrator: office@iaees.org, website@iaees.org; Last modified: 2024/5/20


Translate page to: