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Abstract 

In present study, I present a method of network evolution that based on random network, and facilitated by 

node attraction. In this method, I assume that the initial network is a random network, or a given initial 

network. When a node is ready to connect, it tends to link to the node already owning the most connections, 

which coincides with the general rule (Barabasi and Albert, 1999) of node connecting. In addition, a node may 

randomly disconnect a connection i.e., the addition of connections in the network is accompanied by the 

pruning of some connections. The dynamics of network evolution is determined of the attraction factor  of 

nodes, the probability of node connection, the probability of node disconnection, and the expected initial 

connectance. The attraction factor of nodes, the probability of node connection, and the probability of node 

disconnection are time and node varying. Various dynamics can be achieved by adjusting these parameters. 

Effects of simplified parameters on network evolution are analyzed. The changes of attraction factor  can 

reflect various effects of the node degree on connection mechanism. Even the changes of  only will generate 

various networks from the random to the complex. Therefore, the present algorithm can be treated as a general 

model for network evolution. Modeling results show that to generate a power-law type of network, the 

likelihood of a node attracting connections is dependent upon the power function of the node’s degree with a 

higher-order power. Matlab codes for simplified version of the method are provided. 
 
Keywords network evolution; node attraction; connection probability; disconnection.  

 

 

 

 

 

 

 

 

1 Introduction 

In 1998, Watts and Strogatz presented a method for generating random graphs. Thereafter, Barabasi and Albert 

(1999) proposed a general and known mechanism for network evolution. The algorithm developed by Cancho 

and Sole (2001) can generate a variety of complex networks with diverse degree distributions. Zhang (2012a, 

2012b, 2015, 2016) proposed a series of methods for network generation and evolution. In present study, I will 

propose method of network evolution that based on random network, and facilitated by node attraction. Deep 

analyses will be implemented to understand the properties of the method. 
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2 Algorithm 

I assume that the initial network is a random network (this is popular in nature. For example, the distribution 

of particles with different sizes with which the water vapor attaches to generate droplets; the random 

distribution of matter/nucleus of crystallization for the generation of stars/crystals, etc.), or a given initial 

network. When a node is ready to connect, it tends to link to the node already owning the most connections 

(the largest node), which coincides with the general rule of node connecting (Barabasi and Albert, 1999). In 

addition, a node may randomly disconnect a connection, i.e., the addition of connections in the network is 

accompanied by the pruning of some connections. 

Assume there are totally v nodes in the network. Expected initial connectance (connectance=practical 

connections/potential maximum connections) is c (initial condition) if the initial network is a random network 

generated by the algorithm, expected final connectance is ce (termination condition), the attraction factor of 

nodes is (t,a) (driving variable; (t,a)>0, where a is the node degree), the probability of node connection is 

p(t,a) (driving variable), the probability of node disconnection is q(t,a,b) (driving variable, where b is the 

connected node’s degree), maximum number of iterations is iter (termination condition), and the confidence 

degree for detecting the statistic significance of network type is  (auxiliary constant). (t,a), p(t,a), and 

q(t,a,b) are time and node (in particular node degree) varying. The procedures are as follows 

(1) Generate the initial network. In the situation of random initial network, assume the adjacency matrix  

of the random network is d=(dij), i, j=1,2,…,v, where dij=dji, dii=0, and if dij=1 or dji=1, there is a connection 

between nodes i and j. For each pair of i, j (i=1,2,…,v-1; j>i), generate a random value r, if r<c, dij=1 and 

dji=1. Otherwise, the initial network is a given network. 

(2) Let t=1. Calculate the degree of node, ai(t), i=1,2,…,v. The cumulative attraction strength of node 1 to  

node i is  
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(3) Generate/disconnect connections. For the node i, i=1,2,…,v, generate a random value s, if s<p(t,ai),  

the node i is ready to connect to one of the remaining nodes. Let p0(t)=0. For the node j, j=1, 2,…,v, ji, 

generate a random value w. dij=1 and dji=1, if pi-1(t)w<pi(t). In the practical uses, the interval [pi-1(t), pi(t)) 

represents the mass or volume of the particle i, the gravity of the celestial body i, the personality charm of the 

person i, the academic impact of the scientist i, etc. 

For the node i, i=1,2,…,v, generate a random value g; if g<q(t,ai,b), one of the connections of the node i, 

e.g., dij, is randomly disconnected, and let dij=0 and dji=0. 

   By doing so, a network at time t is generated. Various indices and methods, e.g., coefficient of variation 

(CV), aggregation index (AI), and entropy (Zhang and Zhan, 2011; Zhang, 2012a) can be used to detect the 

types and properties of the network. 

   (4) Calculate the connectance C of the network. Let t=t+1 and return (2), if C is less than the expected 

final connectance ce; otherwise, the algorithm terminates, if C is not less than ce, or the maximum iterations 

iter are achieved. 

   For convenience and simplicity, assume (t,a)=, p(t,a)=p, q(t,a,b)=q, i.e., the attraction factor of nodes, 

the probability of node connection, and the probability of node disconnection are constants for any degree of 

nodes at any time. Thus we obtain a simplified version of the algorithm. 

The following are Matlab codes for simplified version of the algorithm (netEvolution.m) 
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%Reference: Zhang WJ. 2016. A random network based, node attraction facilitated network evolution method. 

Selforganizology, 3(1): 1-9 

v=input('Total number of nodes in the network= ');   

choice=input('Input the type (1: a random network generated by the algorithm; 2: a given network) of generating initial network: 

');  

if (choice==1) ci=input('Expected initial connectance (=practical connections/potential maximum connections; e.g., 0.05, etc)= '); 

end 

if (choice==2) adjstr=input('Input the file name of adjacency matrix of the given initial network (e.g., raw.txt, raw.xls, etc. 

Adjacency matrix is d=(dij)v*v, where v is the number of nodes in the network. dij=1, if vi and vj are adjacent, and dij=0, if vi 

and vj are not adjacent; i, j=1,2,…, v: ','s'); end 

ce=input('Expected final connectance (=practical connections/potential maximum connections; e.g., 0.1, 0.15, etc)= ');   

lamda=input('Attraction factor of nodes (lamda; e.g., 2, 4, etc. lamda>0)= ');   

p=input('Probability of node connection (e.g., 0.1, 0.2)= ');   

q=input('Probability of node disconnection (e.g., 0, 0.01)= ');   

alpha=input('Confidential degree for detecting network type (e.g., 0.05, 0.01)= ');   

iter=input('Permitted maximum iterations (e.g., 5000)= ');   

adj=zeros(v); 

degr=zeros(1,v); 

prop=zeros(1,v); 

z=zeros(v); 

if (choice==1) 

for i=1:v-1 

for j=i+1:v 

if (rand()<ci) adj(i,j)=1; adj(j,i)=1; end 

end; end; end 

if (choice==2) adj=load(adjstr); end; 

degr=sum(adj); 

fprintf('Initial adjacency matrix\n')  

disp([adj]) 

fprintf('Initial degree distribution\n')  

disp([degr]) 

 t=1; 

while (v>0) 

propdegr=degr.^lamda; 

prop(1)=propdegr(1)/sum(propdegr); 

for i=2:v; 

prop(i)=prop(i-1)+propdegr(i)/sum(propdegr); 

end 

node=zeros(1,v); 

nu=0; 

for i=1:v 

if (rand()<p) nu=nu+1; node(nu)=i; end 

end 

for k=1:nu; 

for i=1:v 
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if (node(k)~=i) continue; end 

lab=0; 

ran=rand(); 

for j=1:v 

if (j==i) continue; end 

if (j==1) st=0; end 

if (j>=2) st=prop(j-1); end 

if ((ran>=st) & (ran<prop(j))) lab=1; adj(i,j)=1; adj(j,i)=1; break; end 

end 

if (lab==1) break; end 

end; end 

nodes=zeros(1,v); 

for i=1:v 

if (rand()<q) nodes(i)=1; end 

end 

for i=1:v-1 

if (nodes(i)~=1) break; end 

nuu=0; 

for j=i+1:v 

if (adj(i,j)==1) nuu=nuu+1; z(i,j)=nuu; end 

end 

np=round(rand()*nuu+0.5); 

for j=i+1:v 

if (z(i,j)==np) adj(i,j)=0; adj(j,i)=0; end 

end; end 

fprintf(['\n\nTime ' num2str(t)])  

fprintf(['\n\nAdjacency matrix\n'])  

disp([adj]) 

degr=sum(adj); 

fprintf('\nDegree distribution\n')  

disp([degr]) 

cnow=(sum(degr)/2)/((v^2-v)/2); 

fprintf(['\nConnectance=' num2str(cnow) '\n'])  

meann=mean(degr); 

varr=(std(degr))^2; 

fprintf(['\nEntropy=' num2str(varr-meann) '\n'])  

num=0; 

cv=varr/meann; 

fprintf(['\nCoefficient of variation (CV)=' num2str(cv) '. '])  

x2=cv*(v-1); 

sig=chi2cdf(x2,v-1); 

if (sig<=alpha) fprintf('The network is a random network according to CV.\n'); end 

if ((sig>alpha) & (cv>1)) fprintf('The network is a complex network according to CV.\n'); num=num+1; end; 

summ=sum(degr); 

summa=sum(degr.*(degr-1)); 

4
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h=v*summ

fprintf(['\n

x2=h*(sum

sig=chi2cd

if (sig<=al

if ((sig>alp

if (num>=

if (cnow>=

if (t>=iter)

t=t+1; 

end 
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3.3 Model’s universality 

As mentioned above, the changes of attraction factor  can reflect various effects of the node degree on 

connection mechanism (Table 1, Fig. 2). The larger  will lead to generate complex networks, e.g., exponential 

law, power law networks, etc. 0 means a trend to generate the random network. Even the changes of  only 

will generate various networks from the random to the complex (Table 1). Therefore, the present algorithm can 

be treated as a general model for network evolution. 

Modeling results (Table 1) show that to generate power-law distributed node degrees (i.e., to generate a 

power-law type of network), the likelihood of a node attracting connections is dependent upon the power 

function of the node’s degree with a higher-order power.  

 

4 Discussion  

In present method, the dynamics of network evolution is determined of (t,a), p(t,a), q(t,a,b), and c. I 

simplify all parameters as constants. However, more complex mechanism for network evolution can be 

achieved by setting reasonable forms of (t,a), p(t,a), q(t,a,b), depending on the networks being studied. In 

present study, I use a small range of parametrical values for parametrical analysis. More properties may be 

found by broadening the range of parametrical values. In present algorithm, the addition of connections 

coincides with the general rule of node connecting (Barabasi and Albert, 1999). However, the mechanism for 

pruning of connections is still unknown (unknown q(t,a,b)), thus in the simplified version of the algorithm, 

q=0 is a better choice. 
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