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Abstract

In present study, | present a method of network evolution that based on random network, and facilitated by
node attraction. In this method, | assume that the initial network is a random network, or a given initial
network. When a node is ready to connect, it tends to link to the node already owning the most connections,
which coincides with the general rule (Barabasi and Albert, 1999) of node connecting. In addition, a node may
randomly disconnect a connection i.e., the addition of connections in the network is accompanied by the
pruning of some connections. The dynamics of network evolution is determined of the attraction factor A of
nodes, the probability of node connection, the probability of node disconnection, and the expected initial
connectance. The attraction factor of nodes, the probability of node connection, and the probability of node
disconnection are time and node varying. Various dynamics can be achieved by adjusting these parameters.
Effects of simplified parameters on network evolution are analyzed. The changes of attraction factor A can
reflect various effects of the node degree on connection mechanism. Even the changes of A only will generate
various networks from the random to the complex. Therefore, the present algorithm can be treated as a general
model for network evolution. Modeling results show that to generate a power-law type of network, the
likelihood of a node attracting connections is dependent upon the power function of the node’s degree with a
higher-order power. Matlab codes for simplified version of the method are provided.
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1 Introduction

In 1998, Watts and Strogatz presented a method for generating random graphs. Thereafter, Barabasi and Albert
(1999) proposed a general and known mechanism for network evolution. The algorithm developed by Cancho
and Sole (2001) can generate a variety of complex networks with diverse degree distributions. Zhang (2012a,
2012h, 2015, 2016) proposed a series of methods for network generation and evolution. In present study, I will
propose method of network evolution that based on random network, and facilitated by node attraction. Deep
analyses will be implemented to understand the properties of the method.
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2 Algorithm

I assume that the initial network is a random network (this is popular in nature. For example, the distribution
of particles with different sizes with which the water vapor attaches to generate droplets; the random
distribution of matter/nucleus of crystallization for the generation of stars/crystals, etc.), or a given initial
network. When a node is ready to connect, it tends to link to the node already owning the most connections
(the largest node), which coincides with the general rule of node connecting (Barabasi and Albert, 1999). In
addition, a node may randomly disconnect a connection, i.e., the addition of connections in the network is
accompanied by the pruning of some connections.

Assume there are totally v nodes in the network. Expected initial connectance (connectance=practical
connections/potential maximum connections) is c (initial condition) if the initial network is a random network
generated by the algorithm, expected final connectance is c. (termination condition), the attraction factor of
nodes is A(t,a) (driving variable; A(t,a)>0, where a is the node degree), the probability of node connection is
p(t,a) (driving variable), the probability of node disconnection is q(t,a,b) (driving variable, where b is the
connected node’s degree), maximum number of iterations is iter (termination condition), and the confidence
degree for detecting the statistic significance of network type is o (auxiliary constant). A(t,a), p(t,a), and
g(t,a,b) are time and node (in particular node degree) varying. The procedures are as follows

(1) Generate the initial network. In the situation of random initial network, assume the adjacency matrix
of the random network is d=(dj), i, j=1,2,...,v, where d;=d;;, d;;=0, and if d;=1 or d;=1, there is a connection
between nodes i and j. For each pair of i, j (i=1,2,...,v-1; j>i), generate a random value r, if r<c, d;=1 and
d;i=1. Otherwise, the initial network is a given network.

(2) Lett=1. Calculate the degree of node, a;(t), i=1,2,...,v. The cumulative attraction strength of node 1 to
node i is
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(3) Generate/disconnect connections. For the node i, i=1,2,...,v, generate a random value s, if s<p(t,a;),
the node i is ready to connect to one of the remaining nodes. Let po(t)=0. For the node j, j=1, 2,...,v, j#i,
generate a random value w. d;j=1 and d;=1, if pi.1(t)<w<p;(t). In the practical uses, the interval [p;.1(t), pi(t))
represents the mass or volume of the particle i, the gravity of the celestial body i, the personality charm of the
person i, the academic impact of the scientist i, etc.

For the node i, i=1,2,...,v, generate a random value g; if g<q(t,a;,b), one of the connections of the node i,
e.g., dij, is randomly disconnected, and let d;;=0 and d;;=0.

By doing so, a network at time t is generated. Various indices and methods, e.g., coefficient of variation
(CV), aggregation index (Al), and entropy (Zhang and Zhan, 2011; Zhang, 2012a) can be used to detect the
types and properties of the network.

(4) Calculate the connectance C of the network. Let t=t+1 and return (2), if C is less than the expected
final connectance c.; otherwise, the algorithm terminates, if C is not less than c,, or the maximum iterations
iter are achieved.

For convenience and simplicity, assume A(t,a)=A, p(t,a)=p, q(t,a,b)=q, i.e., the attraction factor of nodes,
the probability of node connection, and the probability of node disconnection are constants for any degree of
nodes at any time. Thus we obtain a simplified version of the algorithm.

The following are Matlab codes for simplified version of the algorithm (netEvolution.m)
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v=input(‘'Total number of nodes in the network=");

choice=input(‘Input the type (1: a random network generated by the algorithm; 2: a given network) of generating initial network:
)

if (choice==1) ci=input('Expected initial connectance (=practical connections/potential maximum connections; e.g., 0.05, etc)=");
end

if (choice==2) adjstr=input('Input the file name of adjacency matrix of the given initial network (e.g., raw.txt, raw.xls, etc.
Adjacency matrix is d=(dij)v*v, where v is the number of nodes in the network. dij=1, if vi and vj are adjacent, and dij=0, if vi
and vj are not adjacent; i, j=1,2,..., v:','s"); end

ce=input('Expected final connectance (=practical connections/potential maximum connections; e.g., 0.1, 0.15, etc)=");

~—

lamda=input('Attraction factor of nodes (lamda; e.g., 2, 4, etc. lamda>0)=");
p=input(‘Probability of node connection (e.g., 0.1, 0.2)=");
g=input('Probability of node disconnection (e.g., 0, 0.01)=");
alpha=input(‘Confidential degree for detecting network type (e.g., 0.05, 0.01)=");
iter=input('Permitted maximum iterations (e.g., 5000)=");
adj=zeros(v);
degr=zeros(1,v);
prop=zeros(1,v);
z=zeros(v);
if (choice==1)
for i=1:v-1
for j=i+lv
if (rand()<ci) adj(i,j)=1; adj(j,i)=1; end
end; end; end
if (choice==2) adj=load(adjstr); end;
degr=sum(adj);
fprintf(‘Initial adjacency matrix\n')
disp([adj])
fprintf(‘Initial degree distribution\n’)
disp([degr])
t=1;
while (v>0)
propdegr=degr.*"lamda;
prop(1)=propdegr(1)/sum(propdegr);
for i=2:v;
prop(i)=prop(i-1)+propdegr(i)/sum(propdegr);
end
node=zeros(1,v);
nu=0;
for i=1:v

if (rand()<p) nu=nu+1; node(nu)=i; end

end
for k=1:nu;
fori=1.v
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if (node(k)~=i) continue; end

lab=0;

ran=rand();

for j=1:v

if (j==i) continue; end

if (j==1) st=0; end

if (j>=2) st=prop(j-1); end

if ((ran>=st) & (ran<prop(j))) lab=1; adj(i,j)=1; adj(j,i)=1; break; end
end

if (lab==1) break; end

end; end

nodes=zeros(1,v);

fori=1:v

if (rand()<q) nodes(i)=1; end

end

for i=1:v-1

if (nodes(i)~=1) break; end

nuu=0;

for j=i+1l:v

if (adj(i,j)==1) nuu=nuu+1; z(i,j)=nuu; end
end

np=round(rand()*nuu+0.5);

for j=i+lv

if (z(i,j)==np) adj(i,j)=0; adj(j,i)=0; end
end; end

fprintf([\n\nTime ' num2str(t)])
fprintf([\n\nAdjacency matrix\n])
disp([adj])

degr=sum(adj);

fprintf(\nDegree distribution\n’)
disp([degr])
cnow=(sum(degr)/2)/((v"2-v)/2);
fprintf(['\nConnectance=" num2str(cnow) \n'T)
meann=mean(degr);

varr=(std(degr))"2;
fprintf(['\nEntropy="num2str(varr-meann) \n')
num=0;

cv=varr/meann;

fprintf(['\nCoefficient of variation (CV)="num2str(cv) ". '])
X2=cv*(v-1);

sig=chi2cdf(x2,v-1);

if (sig<=alpha) fprintf('The network is a random network according to CV.\n"); end
if ((sig>alpha) & (cv>1)) fprintf('The network is a complex network according to CV.\n"); num=num-+1; end;

summ=sum(degr);
summa=sum(degr.*(degr-1));
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h=v*summa/(summ*(summ-1));

fprintf(['\nAggregation index (Al)="num2str(h) *. ')

x2=h*(summ-1)+v-summ;

sig=chi2cdf(x2,v-1);

if (sig<=alpha) fprintf('The network is a random network according to Al.\n"); end;

if ((sig>alpha) & (h>1)) fprintf('The network is a complex network according to Al.\n); num=num+1; end;
if (num>=2) fprintf('\nThe network is a complex network according to all indices.\n"); end;

if (cnow>=ce) break; end

if (t>=iter) break; end,;

t=t+1;

end

3 Results and Analysis

In present study, for the convenience, the initial network is a random network generated by the algorithm.

3.1 Dynamics of network evolution

Running the simplified version of the network evolution algorithm, Fig. 1 illustrates a case of the dynamics of
properties of the network in the evolution. The parameters were set as v=30, ¢=0.05, c,=0.2, A=3, p=0.2, g=0,
0=0.05. In this case, the connected nodes increase quickly until all nodes are connected. Connectance of the
network increases with the time. Coefficient of variation (CV) increases quickly to an approximate upper
asymptote. However, aggregation index increases quickly to a climax and drops down thereafter. Generally,
the three indices increase most quickly until all nodes are connected.
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Fig. 1 Property dynamics of network evolution (v=30, ¢=0.05, ¢,=0.2, =3, p=0.2, q=0, o=0.05).

3.2 Parametrical analysis

3.2.1 Effects of the attraction factor of nodes A

Fixing v=30, ¢=0.05, ¢,=0.2, p=0.2, q=0, a=0.05, and running the simplified version of the network evolution
algorithm, analyze the effects of the attraction factor of nodes A on network evolution. Fig. 2 indicates that
for A=0.05, 1, 2, 3, and 4, connectance of the network increases more quickly if A is smaller. Coefficient of
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variation and aggregation index increases more quickly if A is greater.

Table 1 indicates the results of properties of network in the last iteration (expected final connectance is
achieved). It can be found that required iterations increase with A. With the same expected final connectance,
the coefficient of variation, aggregation index, and entropy increase with A, which means the complexity of
the final network increases with A.

3.2.2 Effects of the probability of node connection p

Fixing v=30, ¢=0.05, c.=0.2, A=3, q=0, analyze the effects of the probability of node connection p on network
evolution. Fig. 3 indicates that for p=0.01, 0.05, 0.1, and 0.2, the three indices increase more quickly if p is
greater.

3.2.3 Effects of the probability of node disconnection g

Fixing v=30, ¢=0.05, p=0.2, c.=0.2, A=3, analyze the effects of the probability of node disconnection qon
network evolution. Fig. 4 indicates that for g=0, 0.01, 0.02, and 0.03, connectance of the network increases
more quickly if g is smaller. Coefficient of variation and aggregation index increases more quickly if g is
greater.

3.2.4 Effects of expected initial connectance ¢

Fixing v=30, ¢.=0.2, A=3, p=0.2, =0, analyze the effects of the expected initial connectance c on network
evolution. Fig. 5 indicates that for ¢=0.01, 0.03, 0.05, and 0.08, connectance of the network increases more
quickly if ¢ is greater. Coefficient of variation and aggregation index increases more quickly if ¢ is smaller.
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Fig. 2 Effects of the attraction factor of nodes A (1=0.5,1,2,3,4), fixing v=30, ¢=0.05, ¢.=0.2, p=0.2, and g=0.
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Table 1 The changes of network properties for the last iteration over A, fixing v=30, ¢=0.05, ¢,=0.2, p=0.2, g=0, 0=0.05.

A 0.01 0.5 1 2 3 4
t 11 13 16 15 93 323
Connectance 0.20 0.21 0.20 0.20 0.20 0.20
Entropy -2.14 0.27 6.92 12.82 27.98 44.50
Coefficient of

0.64 1.05 2.19 3.16 5.77 8.67

Variation (CV)

Network type (CV)

Random network

Complex network

Complex network

Complex network

Complex network

Complex network

Aggregation Index (Al) 0.94
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3 Effects of the probability of node connection p (p=0.01,0.05,0.1,0.2), fixing v=30, ¢=0.05, c,=0.2, A=3, and g=0.
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Fig. 4 Effects of the probability of node disconnection ¢ (q=0,0.01,0.02,0.03), fixing v=30, ¢=0.05, c,=0.2, p=0.2, and A=3.
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. 5 Effects of expected initial connectance ¢ (c=0.01,0.03,0.05,0.08), fixing v=30, ¢.=0.2, A=3, p=0.2, and =0,
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3.3 Model’s universality
As mentioned above, the changes of attraction factor A can reflect various effects of the node degree on
connection mechanism (Table 1, Fig. 2). The larger A will lead to generate complex networks, e.g., exponential
law, power law networks, etc. A—0 means a trend to generate the random network. Even the changes of A only
will generate various networks from the random to the complex (Table 1). Therefore, the present algorithm can
be treated as a general model for network evolution.

Modeling results (Table 1) show that to generate power-law distributed node degrees (i.e., to generate a
power-law type of network), the likelihood of a node attracting connections is dependent upon the power
function of the node’s degree with a higher-order power.

4 Discussion

In present method, the dynamics of network evolution is determined of A(t,a), p(t,a), q(t,a,b), and c. |
simplify all parameters as constants. However, more complex mechanism for network evolution can be
achieved by setting reasonable forms of A(t,a), p(t,a), q(t,a,b), depending on the networks being studied. In
present study, I use a small range of parametrical values for parametrical analysis. More properties may be
found by broadening the range of parametrical values. In present algorithm, the addition of connections
coincides with the general rule of node connecting (Barabasi and Albert, 1999). However, the mechanism for
pruning of connections is still unknown (unknown q(t,a,b)), thus in the simplified version of the algorithm,
g=0 is a better choice.
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