
Selforgani

 IAEES

Article

Validi

in the

Syed Uz
1Departme
2Departme

E-mail: ssu

Received 1

Abstract

As we kn

way to a

approach

design. In

we will u

last we w

same des

Keyword

1 Introd

Accordin

definition

reasonab

irregular

pattern th

to detect

next pha

refactorin

flaws are

2011; Ta

over all

that is mo

Selforga
ISSN 241
URL: htt
RSS: http
E­mail: s
Editor­in
Publishe

izology, 2016, 3

ty proce

e design

air Ahmad1,
ent of Informati

ent of Informati

uab.kk@gmail.

19 November 20

t

now that in th

address flaw

h has been us

n this paper w

use model bas

will validate t

sign.

ds validation

duction

ng Jennifer C

n by (Jane H

ble representa

or no associ

hat may affec

and remove

ases of the sy

ng to refine

e very difficu

ahvildari and

it is good to

odel has been

anizology
10­0080
p://www.iaees.o
p://www.iaees.o
selforganizology
n­Chief: WenJun
er: International

3(1): 16-24

ess for re

model

, Muhammad
ion Technology

ion Technology

.com, Naeem@

015; Accepted 2

he start level

through refa

sed to refacto

we are going

sed on coupli

the model, the

; flaw; coupli

Campbell win

Hillston Septe

ation of the a

iation with ea

ct the quality

the flaws tha

ystem. When

the design f

ult to handle

Kontogianni

 pick out flaw

n disturbed or

org/publication
org/publications
y@iaees.org
n Zhang
l Academy of Eco

efactored

d Naeem2
y, Hazara Unive

y, Abbottabad U

@hu.edu.pk

22 December 2

l, it is better t

actoring. All

or the non di

to address th

ing defined m

e validation n

ing; bad fixes

nter 2007 va

ember 19, 20

actual system

ach other (Ob

of software i

at may exist in

n a design fla

from that flaw

them all and

is, 2003; Men

w and refacto

r not.

ns/journals/selfo
s/journals/selfo

ology and Enviro

d couplin

ersity, Mansehr

University of Sc

2015; Published

to pick out fl

of technique

spatchable fl

he missing po

model, second

needs because

s; refactoring

lidation mea

03) Validatio

m “A design f

bjecteeing, 2

is called a de

n the design o

aw is found,

w (Yaowarat

d harder to u

ns et al., 200

or it as possib

organizology/on
organizology/rss

onmental Scienc

ng based

ra, Pakistan

cience and Tech

d online 1 Marc

law and refac

es cover the

law based on

oint as for fou

d will refactor

e to ensure th

g; dispatch.

ns “Are we

on is the task

flaw is define

015; Seidewi

esign flaw (M

of a system as

normally re

ttanaprasert a

understand, m

04; Bacchelli,

ble, and for c

nline­version.asp
s.xml

ces

d non-dis

hnology, Abbot

ch 2016

ctored it, as s

area of refa

n coupling an

unded in prev

red it, third w

hat the model

building the

k of demonstr

ed as the cla

itz, 2003). In

Mekruksavanic

s early as pos

esearchers app

and Muencha

maintain the s

, 2010; Saxen

checking vali

p

 w

spatchab

ttabad, Pakistan

soon as possib

actoring or v

nd validate th

vious works. F

will check bad

l has changed

right system

rating that th

sses or objec

n other words

ch, 2011). Th

ssible to do no

ply some tec

aisri, 2013).

system (Mek

na and Kuma

idate that mo

www.iaees.org

ble flaws

n

ble. It is best

validation, no

hat refactored

For example,

d fixes and at

d design or in

m?” the other

he model is a

cts having an

s, any design

his is advised

ot disturb the

chniques like

Later on the

kruksavanich,

ar, 2012). So

del to ensure

s

t

o

d

,

t

n

r

a

n

n

d

e

e

e

,

o

e

Selforganizology, 2016, 3(1): 16-24

IAEES www.iaees.org

2 Back Ground

Jane Hillston (September 19, 2003) define validation as: “Validation is the task of demonstrating that the

model is a reasonable representation of the actual system”. Validation concerned with building the right model.

It is utilized to determine that a model is an accurate representation of the real system. Validation is usually

achieved through the calibration of the model, an iterative process of comparing the model to actual system

behavior and using the discrepancies between the two, and the insights gained, to improve the model. This

process is repeated until model accuracy is judged to be acceptable. A model is usually developed to analyze a

particular problem and may therefore represent different parts of the system at different levels of abstraction.

As a result, the model may have different levels of validity for different parts of the system across the full

spectrum of system behaviour For most models there are three separate aspects which should be considered

during model validation which are Assumptions, input parameter values and distributions and Output values

and conclusions.

There are three validation models or strategies for validating data:

- Rejecting bad data: creating a set of undesirable data and rejecting them. This model is also known as

“blacklist” approach.

- Accepting only known good data: data constrained by Five Primary Security Input Validation Attributes

which are: type, length, character set, format, reasonableness. Data is rejected unless it matches for known

good data. This model is also known as “white list” approach.

- Sanitizing data: sanitizing a defined set of dangerous data so that it does not pose a threat to the software

(PedramHayati 2008). It is important to know that how we can apply validation process to our model. Before

validation we will use metric to find different class and object number in model. Detail of metric use and

types are under:

Definition1: MetricModel

Model metrics are for estimating the size or the amount of information contained in a model.

We can use metrics according to pointed situation. Each different object and class relation has different metric,

as given below.

Table 1 Software metrics for UML models (Abbreviation UML Metric).

CBC Coupling between classes
DIT Depth of inheritance tree
NACM Number of actors in a model
NACU Number of actors associated with a use case
NAGM Number of the aggregations in a model
NASC Number of the associations linked to a class
NASM Number of the associations in a model
NATC1 Number of the attributes in a class - unweight
NATC2 Number of the attributes in a class - weighted
NCM Number of the classes in a model
NDM Number of the directly dispatched messages of a message
NDM* Number of the elements in the transitive closure of the directly dispatched messages of a message
NIM Number of the inheritance relations in a model
NMM Number of the messages in a model
NMRC Number of messages received by the instantiated objects of a class
NMSC Number of messages sent by the instantiated objects of a class
NMU Number of messages associated with a use case
NOM Number of the objects in a model
NOPC1 Number of the operations in a class - unweight
NOPC2 Number of the operations in a class - weighted

17

Selforganizology, 2016, 3(1): 16-24

IAEES www.iaees.org

NPM Number of the packages in a model
NSCU Number of system classes associated with a use case
NSUBC Number of the subclasses of a class
NSUBC* Number of the elements in the transitive closure of the subclasses of a class
NSUPC Number of the super classes of a class
NSUPC* Number of the elements in the transitive closure of the super classes of a class
NUM Number of the use cases in a model

3 Model Metrics

1. Number of the packages in a model (NPM): This metric counts the number of packages in a model. Package

is a way of managing closely related modeling elements together. Also by using packages, naming conflicts

can be avoided.

2. Number of the classes in a model (NCM): A class in a model is an instance of the meta class “class”. This

metric counts the number of classes in a model. This metric is comparable to the traditional LOC (lines of code)

or a more advances McCabe’s cyclomatic complexity (MVG) metric for estimating the size of a system [7].

Thus, in OOP this metric can be used to compare sizes of systems.

3. Number of actors in a model (NAM): According to the UML specification [10], an actor is a special class

whose stereotype is “Actor”. This metric computes the number of actors in a model.

4. Number of the use cases in a model (NUM): The rationale behind the inclusion of this metric is that a use

case represents a coherent unit of functionality provided by a system, a subsystem, or a class.

5. Number of the objects in a model (NOM): In a similar manner that a class is an instance of the metaclass

“Class”, an object is an instance of a class.

6. Number of the messages in a model (NMM): A message is an instance of the metaclass “Message”.

Messages are exchanged between objects manifesting various interactions.

7. Number of the associations in a model (NASM): An association is a connection, or a link, between classes.

This metric is useful for estimating the scale of relationships between classes.

8. Number of the aggregations in a model (NAGM): An aggregation is a special form of association that

specifies a whole-part relationship between the aggregate (whole) and a component part.

9. Number of the inheritance relations in a model (NIM): This metric counts the number of generalization

relationships between classes existing in a model.

4 Related Work

Moha (2007) provided a systematic method to specify design defects accurately. Their approach is based on

detection and correction algorithms by using refactoring semi-automatically. To apply and validate these

algorithms on open-source object-oriented programs was used to show that method allows the systematic

description, detection, and correction of design defects with a reasonable precision.

Mekruksavanich (2011) proposed a methodology for detection of design flaws. Symbolic logic

representation and analytical learning technique are used to diagnose design flaws in simple way and to

extrapolate patterned rules for complex flaws. The methodology is validated by detecting design flaws in an

open-source system.

Saxena and Kuma (2012) helped to find the flaw in the design model and to remove it as early as possible.

They used the flaw pattern for finding the flaw. When design flaw is detected based in the design pattern, the

process exits after dispatching that flaw, the proposed approach was composed of model representation of

design model and flaws detection using flaw patterns. The design models of UML class and sequence

18

Selforganizology, 2016, 3(1): 16-24

IAEES www.iaees.org

diagrams were used as an input. It would be transformed to the proposed representation model. In detecting

flaws, flaw patterns are used in checking against the representation model. This study covered flaw patterns for

detecting Large Class, Refused Bequest, and Middle Man.

In Mohamed et al. (2011), authors used the approach of automatic flaw detection in design model. To find

the number of flaw number of classes and detection. Which was based on model qualities metrics and design

flaws, author suggest a new demarche allowing the mechanized finding of model refactoring opportunities and

the assisted model restructuration. Which focused on class and sequence diagrams. That developed a software

call’s M-Refactor for those works.

According to Trifu et al. (2004) authors used the flaw detection and correction. The process as problem

detected, developers obtain a list of design flaws together with their location in the system. The necessary

transformations that removed them were left to their own judgment and experience. The mapping between

specific design flaw and code transformations is removed.

In Kessentini (2011) authors used an approach to detect the flaw in design and correct the flaw in the

source code. Their approach support automatic generation of rules to detect defects by the help of genetic

programming. Using a genetic algorithm, adjustment solutions are found by combining refactoring operations

in such a way to reduce the number of detected defects. The detection system is physically specified. Projected

corrections fix, in standard, more than 74% of detected defects.

Alikacem and Sahraoui (2010) provide support for source code analysis. They proposed a rule-based

approach that allowed the specification and detection of flaws. The approach provided a new language to

describe flaws as sets of rules. The latter are translated into Jess’s rule format, and given as input to Jess

inference engine. The current work is an extension of our source code analysis platform and PatOIS, a metric

description language. A main advantage of his approach was its extensibility since the tool is not limited to a

set of predefined flaws. Existing flaws could be modified to a specific context and new ones could be added.

Budi et al. (2011) provided a framework that automatically labels classes as Boundary, Control, or Entity,

and detects design flaws of the rules associated with each stereotype. Their evaluation with programs

developed by both novice and expert developers show that his technique is able to detect many design flaws

accurately.

The main theme of authors in the paper is to find flaw through metric base and convert it into code may in

Java or C++. They defined such detection strategies for capturing around ten important flaws of object-

oriented design found in the literature and validated the approach experimentally on multiple large-scale case-

studies (Marinescu, 2004).

Marinescu (2003) focused on flaw detection through metric base and converted into object-oriented

system.

This paper presented a metrics-based approach for detecting design problems, which describes two

concrete techniques for the detection of two well-known design flaws found in the literature. By an experiment

it was showed that the proposed technique found indeed real flaws in the system and it suggests that, based on

the same approach.

Moha et al. (2008) used an approach propose a novel approach for defect removal in object-oriented

programs that combines the efficiency of metrics with the theoretical strength of formal concept analysis

Algorithm. They suggested a novel approach for defect deduction in object-oriented programs that combines

the usefulness of metrics with the hypothetical power of formal concept analysis, and case study of an exact

fault.

Simon et al. (2006) have worked for finding bad smells. With four typical refactoring’s and present both a

tool supporting the identification and case studies of its application. They showed that special kind of metrics

19

Selforganizology, 2016, 3(1): 16-24

IAEES www.iaees.org

can support these skewed perceptions and thus can be used as effective and efficient way to get support for the

decision where to apply which refactoring. They demonstrate this loom for four typical refactoring’s and

present both a tool supporting the classification and case studies of its function.

Syed et al. (2015) worked on Refactoring of non-dispatchable flaws in the design model based on

coupling. In this work he cover all the aspects which was blank in the above all works. But one thing which is

validation still remained in his work.

The entire above techniques draw backs have been covered by Syed el al. but, one thing still remains that

is: When the process has been done of dispatch and non-dispatchable flaw, how we will find that our model

has been in required position. For this we are going to use an approach to validate our model after passing

through the process as under.

5 Our Approach

The previous work was divided into six steps, now we are going to fix the previous error in approach. For this

we will add another one step in the existing approach. So the new step will be validation of model.

Step 1: Domain analysis and metrics identification

Step 2: Modeling and meta modeling

Step 3: Flaw detection and flaw pattern

Step 4: Option if flaw >=1 or no flaw found

Step 5: Condition check for dispatch and non-dispatchable flaw

Step 6: validation check

The systematic view of our approach is

Step 1 (Domain Analysis): We will do the analysis of the domain area, in this step we associate manually

with each design defect to detect them and set refactoring by using metric based identification to find class and

their association through coupling.

Step 2 (Modeling): In modeling, the Meta model for software modeling is important, because it forms the

basis for the UML definition. The UML specification document is indeed a Meta model for UML. That is, it

includes a set of statements that must not be false for any valid UML model. In the metric forms that shows

different sort of associations.

Step 3: (Flaw Detection): In this step, we find the flaws by using flaw detection patterns. Basically, a pattern

is a format which will identify a flaw in the model. We use coupling for the detection of flaws. Coupling

measures the strength of all relationships between functional units.

Step 4: (Flaw does exist or not): Using the above formula, if flaw exists then to be refactored or dispatched, if

not then exit. When the flaw =0, it will exit else if flaw≥1then condition shall be checked. That either flaw is

dispatchable or non-dispatchable, if dispatchable go to dispatch-able module otherwise non-dispatchable and

go for refactoring to refactor module.

Step 5: (Flaw checking of dispatch-able or non-dispatch-able): Condition checking whether the flaw is

dispatch able or non-dispatch able. The dispatch able flaw goes to dispatch able flaw module and the non-

dispatch able flaw goes to the non-dispatch able flaw module. First condition is to check that if flaw is dispatch

able, the flaw goes to the dispatch able module and removed there. The second condition, If flaw is non-

dispatch able and been removed through refactoring a tag Ref; attached to the refactored flaw as a comment for

the detected flaw module to understand that this flaw has refactored and didn’t need to catch it again. Both

from dispatch and non-dispatch able flaw modules the model goes again for rechecking flaws to the detection

flaw module. The cycle continues until all flaws are dispatched or refactored.

20

IAEES

Step 6:

dispatcha

for this c

2, where

step have

associatio

The

6 Class D

The clas

Graphics

Primitive

coordina

This

they mus

design p

recursive

the follow

(validation

able flaws. B

checking we w

 we made me

e similar asso

ons.

e whole system

Diagram Exa

s diagram giv

s are constitu

es have a m

ate system.

s model has s

st be treated

pattern addres

ely grouped i

wing steps, le

of model):

ut we don’t k

will validate

etrics. Simply

ociations so m

m over view

ample

ven in Fig. 1

uted of geom

matrix attribu

some design

differently,

sses this type

in a part-who

eading to the

Selforga

here the ma

know that the

our model. T

y we check a

model will go

is indicated i

1 is a simple

metric Primi

ute representi

flaws; for ins

thus making

e of problem

ole hierarchy.

diagram pres

anizology, 2016

ajor work tak

e refactored m

The last step o

all the associa

o to exit state

n Fig.1.

model of a g

tives and su

ing how they

stance, as Prim

g the code un

m, where a st

. We will the

sented in Fig.

Fig. 1 Our app

6, 3(1): 16-24

kes palace, a

model has bee

of validation t

ations and co

e else model

graphical hie

ub graphs; th

y are scaled

mitives have

nnecessarily

tructure is co

erefore introd

 2.

proach.

as we refacto

en changed fr

take place wi

ompare last st

will be rearra

erarchy for a

hey have a

d, rotated or

no inheritanc

complex. Fo

omposed of b

duce this patt

or the dispat

rom original

ith the compa

tep with step

anged accord

vector graph

method to b

translated in

ce relation w

ortunately, th

basic objects

tern in the m

www.iaees.org

tch and non-

shape or not,

arison of step

 2, if both of

ding to step 2

hics program.

be displayed.

n the global

with Graphics,

he Composite

s that can be

model through

g

-

,

p

f

2

.

.

l

,

e

e

h

21

IAEES

1. Renam

2. Addin

3. Makin

4. Mergin

5. Finally

We

Renamin

(i.e. it do

The

no effect

Cre

to multip

empty.

Mer

same obj

invocatio

Fina

not mode

Whi

have an

object di

ming the Gra

ng an abstract

ng the class Pr

ng the Group

y, we can mo

need to justif

ng of a model

oes not alread

e added abstra

t on the mode

ating a gener

ple inheritanc

rging two ass

jects), when

on through an

ally, moved m

eled).

ile most of th

impact on ot

agrams (Gers

aphic class to

superclass na

rimitive a sub

p-Group and G

ove relevant m

fy why the be

l element doe

dy exist in the

act superclass

el.

ralization betw

ce, for instan

sociations is

the methods

n association

methods or a

hese transform

ther views, th

sonSuny, 200

Selforga

Group;

amed Graphi

bclass of Gra

Group-Primit

methods and a

ehavior prese

es not change

e model).

s has no attrib

ween two cla

nce) is introd

only allowed

invoked thro

is always foll

attributes to th

mations - nam

he merging o

01).

F

Fig. 3 Re

anizology, 2016

c to Group.

aphic.

tive aggregati

attributes up t

ervation cond

anything to t

butes or meth

asses does not

duced; in our

d when these

ough these as

lowed by an i

he superclass

mely element

of two associ

Fig. 2 Initial cla

estructured clas

6, 3(1): 16-24

ions into Gro

to Graphic.

ition holds fo

the model beh

hods. It is a \e

t introduce ne

case, Primit

two associat

ssociations h

invocation th

s will simply

t renaming an

iations may r

ss diagram.

s diagram.

oup-Graphic.

or these mode

havior; provi

empty" mode

ew behavior,

tive had no s

tions are disjo

ave the same

hrough the oth

be inherited

nd the additio

require chang

el transformat

ded the new n

l element; its

provided no

superclass an

oint (they do

e signature, a

her.

afterwards (

on of a superc

ges on collab

www.iaees.org

tions:

name is legal

s addition has

conflict (due

nd Graphic is

o not own the

and when the

(overriding is

class - do not

borations and

g

l

s

e

s

e

e

s

t

d

22

Selforganizology, 2016, 3(1): 16-24

IAEES www.iaees.org

7 Conclusion

As for performing this sort of process we will be able to refactor all the dispatch able and non-dispatchable

flaws, we will also be able to re-structure the model if the model has been misplaced. The model simply makes

meta models using metrics and the store that metric code. After performing all the operations for validation the

model again comes to modeling state. Here the previous and new model metric compared and find the

differences between them. If the model metrics same validate and exit, or else it restructure the model and go

to exit state.

References

Ahmad SU, Naeem M. 2015. Refactoring of non-dispatchable flaws in the design model based on coupling.

Selforganizology, 2015, 2(3): 46-54

Alikacem H, Sahraoui HA. 2010. Rule-Based System for Flaw Specification and Detection in Object-Oriented

Programs. 13th TOOLS Workshop on Quantitative Approaches in Object-Oriented Software Engineering.

1-11

Bacchelli, Lanza M. 2010. On the Impact of Design Flaws on Software Defects.IEEE 10th International

Conference on Quality Software (QSIC), 23-31 Budi A, Lucia, Lo D, Jiang L, Wang S. 2011. Automated

Detection of Likely Design Flaws in Layered Architectures, Research Collection School of Information

Systems, 1-6

Fowler M, Beck K. 1999. Refactoring: Improving the Design of Existing Code. Addison-Wesley Professional,

USA

Kessentini M, Kessentini W, Erradi A. 2011. Example-based Design Defects Detection and Correction.IEEE

19th International Conference Program Comprehension (ICPC). 81-90

Marinescu R. 2001. Detecting Design Flaws via Metrics in Object-Oriented Systems. 39th International

Conference and Exhibition on Technology of Object-Oriented Languages and Systems (TOOLS), 173-182

Marinescu R. 2004. Detection Strategies: Metrics-Based Rules for Detecting Design Flaws. International

IEEE20th Conference on Software Maintenance. 350-359

Mekruksavanich S. 2011. Design flaws detection in object-oriented software with analytical learning method.

International Journal of e-Education, e-Business, e-Management and e-Learning, 1(3): 210-216

Mens T, Tourw T. 2004. A survey of software refactoring. IEEE Transactions on Software Engineering, 30(2):

126-139

Moha N. 2007. Detection and Correction of Design Defects in Object-Oriented Architectures. Companion to

the 22nd ACM Special Interest Group ACM SIGPLAN Conference, 949-950

Moha N, Rezgui J, Gueheneuc Y, Valtchev P, Boussaidi G. 2008. Using FCA to Suggest Refactorings to

Correct Design Defects. 4th International Conference on Concept Lattices and Their Applications. LNCS

4923, 269-275

Mohamed M, Romdhani M, Ghedira K. 2011. M-REFACTOR: A new approach and tool for model refactoring.

American Resources Policy Network (ARPN). Journal of Systems and Software, 1(4): 1-6

Objecteeing. 2015. http://support.objecteering.com

Saxena V, Kumar S. 2012. Impact of coupling and cohesion in object-oriented technology. Journal of Software

Engineering and Applications, 671-676

Seidewitz E. 2003. What Models Mean. IEEE Software. IEEE Computer Society Press Los Alamitos, CA,

USA, 20(5): 26-32

23

Selforganizology, 2016, 3(1): 16-24

IAEES www.iaees.org

Simon F, Steinbrückner F, Lewerentz C. 2001. Metrics Based Refactoring. IEEE 5th European Conference on

Software Maintenance and Reengineering. 30-38

Sunyé, Gerson, Pollet D, Traon Y, Jézéquel J. 2001. Refactoring UML Models. UML2001—TheUnified

Modeling Language. Modeling Languages, Concepts and Tools. 134-148, Springer, Berlin, Heidelberg,

Germany

Tahvildari L, Kontogiannis K. 2003. Metric-Based Approach to Enhance Design Quality ThroughMeta-Pattern

Transformations. Proceedings of 7th European Conference on Software Maintenance and Reengineering.

183-192

Trifu A, Seng O, Genssler T. 2004. Automating Design Flaw Correction in Object-Oriented Systems.

Proceedings of 8th European Conference on Software Maintenance and Reengineering (CSMR 2004).174-

183

Yaowarattanaprasert N, Muenchaisri P. 2013. Graphical pattern matching approach for detecting design flaw

in design model. International Journal of Advanced Research in Computer Science and Software, 2: 1-5

24

