
Selforganizology, 2016, 3(2): 59-74

 IAEES www.iaees.org

Article

Automated inconsistency detection in feature models: A generative

programming based approach

Muhammad Javed1, Muhammad Naeem2, Aarif Iqbal Umar1, Faisal Bahadur1

1Department of Information Technology, Hazara University, Mansehra, Pakistan
2Department of Information Technology, Abbottabad University of Science & Technology, Havelian, Pakistan

E-mail: mjavedgohar@hotmail.com, naeem@hu.edu.pk, aarifiqbalumar@yahoo.com, msosfaisal@yahoo.com

Received 5 March 2016; Accepted 10 April 2015; Published online 1 June 2016

Abstract

The quality of feature model represents the quality of end products because it is used to develop products.

Hence, quality evaluation of feature model is the most important task. The quality detection mechanism

should be efficient enough to evaluate the quality of a given feature model within limited time. So, there is a

need of automated quality evaluation system. Generative Programming (GP) is the most effective way to

automate the quality detection system for feature models. This effort is to present an efficient way to

automate the quality detection system by using one of the GP based technique (GenVoca Layered

Architecture) for inconsistencies in feature model. We implemented this quality detection technique in C++.

We applied this technique on the feature models contain errors.

Keywords quality of feature models; maturity model; Generative Programming (GP); inconsistencies;

GenVoca Layered Architecture.

1 Introduction

Producing things in large amount require standardized processes, especially for the similar products.

Companies are organizing their production in large amount of production (Benavides et al., 2010). To reuse

existing systems in a systematic way, service-oriented systems resemble supply chain where products

manufactured from supplied parts. Same case is for complex service-oriented systems, that needs third party

services (Thomas, 2008). For example, car producer offer variation on a model with variable engines,

gearboxes, audio and entertainment systems. Example of software services is online travel agency that may use

third-party services for hotel booking, invoicing and for payment option (Naeem, 2012). Similarly, increasing

number of software systems with almost similar requirements guide us to Software Product Line (SPL)

(Böckle and Linden, 2005). SPL Engineering helps in the development within application domain by

considering their commonalities and variability. In SPL approach, products are being created by reusability

(Clements and Linda, 2002). SPL incorporating the property of similarities and variability in the family of

Selforganizology
ISSN 24100080
URL: http://www.iaees.org/publications/journals/selforganizology/onlineversion.asp
RSS: http://www.iaees.org/publications/journals/selforganizology/rss.xml
Email: selforganizology@iaees.org
EditorinChief: WenJun Zhang
Publisher: International Academy of Ecology and Environmental Sciences

Selforganizology, 2016, 3(2): 59-74

 IAEES www.iaees.org

software is a new technique in the development of software. This helps in the development of high quality

software in a short period of time with low budget. Progress has been improved in the development by

adopting SPL (Mendonça, 2009). Features represent the aspects of these software (Kang et al., 1990). In

mostly software systems user can select or deselect functional and nonfunctional properties and these options

available to users are known as features (Batory et al., 2006).To get a valid combination of these features we

use feature model that depicts the relationships of these features and constraints on them (Batory, 2005).

The use of high quality process ensures the good quality resulting products. Hence, it is very important to

investigate the quality of the selected model before putting it into practice. In other words, one can say that the

quality of a feature model has prime importance because it contributes towards the development of high

quality products. There are number of properties affecting the quality of a feature model. One of the agreed

deficiencies is the presence of inconsistencies in the feature model.

This paper is to automate quality detection process by one of the Generative Programming (GP)

techniques.GP has been adopted in domain analysis since the 80’s (reference). In GP, system can be produced

from requirements written in domain-specific languages. GP is to develop new systems easily on the basis of

reusable components (Lung et al., 2010).GP emphases on designing and implementation of reusable software

instead of developing software separately for each problem. Hence, the target of generative analysis and design

are families of systems (Czarnecki and Eisenecker, 2000). Main objectives of GP are: minimizing the gap

between concept and implementation, attain high level of reusability, easy to manage different components and

increasing efficiency (Czarnecki et al., 2000).

The rest of the paper is arranged as follows: Sections 2 and 3provide the background information and the

related discussions, respectively. Section 4 contains the proposed GenVoca layered architecture based

inconsistency detection technique and in Section 5 defines the evaluation method of proposed technique.

2 Background

Feature models were introduced by Kang in the form of a technical report on FODA in 1990. A feature is

prominent characteristic of a product (Kang et al., 1990). Feature model is a hierarchical model that captures the

commonality and variability of SPL. The set of permissible selection of features from a feature model is called

an instance (Rosso, 2006). The selection of a feature from a feature model is based on the relevance with its

parent feature.

Fig. 1 A feature model of a mobile phone (Benavides et al., 2010).

60

Selforganizology, 2016, 3(2): 59-74

 IAEES www.iaees.org

A feature model offers the following list of features:

Mandatory feature: If a feature is chosen then its mandatory feature must be selected in that instance (Benavides

et al., 2010). It is represented by a filled circle at the end of edge. For example, Call is a mandatory feature of

Mobile Phone in Fig. 1.

Optional feature: If a feature is selected in an instance then its optional sub-features can be selected or rejected

depending on the preferences (Benavides et al., 2010). It is represented by empty circle at the end of edge. For

example, GPS is an optional feature of Mobile Phone shown in Fig. 1.

Alternative-group: A group of features having an alternative relevance with their parent means that exactly one

feature from this group must be selected if their parent is selected in an instance. It is represented by unfilled arc

(Benavides et al., 2010). For example, features occurring under Screen make an Alternative-group in Fig. 1.

Or-group: For a group of features having an OR relevance with their parent means that at least one feature from

this group must be selected, if their parent is selected in an instance (Rosso, 2006). An Or-group is shown by a

filled arc. For example, features occurring under Media are making an Or-group in Fig. 1.

Apart from the parent child relationship, a feature diagram may have cross-tree constraints that are discussed

below

Requires constraint: If a source of requires constraint is selected that its target must also be chosen in that

instance. This is represented by the dashed arrow that starts from the source and heads towards the target feature.

For example, requires constraint is shown between Camera and High resolution features in Fig. 1.

Excludes Constraint: The source and target features of excludes constraint cannot be selected in an instance.

This is represented by double headed dashed arrow, as shown between Basic and GPS features in Fig. 1.

2.1 Inconsistency in feature model

Inconsistency arises due to the conflicting information in a feature model. It is impossible to obtain any valid

instance from inconsistent feature models. So, inconsistencies are characterized as critical error (Maßen and

Horst, 2004). Following are the inconsistency based errors.

Void feature models: A void feature model defines no instance, i.e., no feature can be selected. This means

that each feature is dead including the root. Thus we say that a void feature model is the one whose root is a

dead feature (Trinidad et al., 2008). In Fig. 2, some of the void feature models are presented.

Fig. 2 Examples of void feature model (Maßen and Horst, 2004).

Invalid Product: Invalid product means that invalid instance of a feature model (Benavides et al., 2010).

Invalid instance misses at least one required feature, e.g., mandatory feature of a feature model (Segura et al.,

2010). In Fig. 3, a mandatory feature E cannot be chosen due to the presence of implies constraint on multiple

features that depicted under one alternative set.

Fig. 3 Feature model with invalid products (Segura et al., 2010).

61

Selforganizology, 2016, 3(2): 59-74

 IAEES www.iaees.org

2.2 GenVoca Architecture an approach for Generative Programming

In GenVoca Model features are represented in layers (Czarnecki and Eisenecker, 2000). For instance the

following expression from Fig. 1 describe that Mobile Phone contains Calls and Screen functionality with

High resolution

Mobile Phone[calls[screen[high resolution]]]

The following figure represents the layered architecture of the above expression where each layer

represents a class with attributes and methods (Czarnecki and Eisenecker, 2000).

Fig. 4 GenVoca Layers (Czarnecki and Eisenecker, 2000).

In this architecture each lower layer passes some parameters to the layer above and the above layer has

interface to collect the parameters. In GenVoca each interface is known as realm. A realm is collection of

classes (Czarnecki and Eisenecker, 2000). Class of GenVoca domain model can be represented as the

following:

Fig. 5 Example of a stacking model in graphical notation and the corresponding grammar (Czarnecki and Eisenecker, 2000).

In Fig. 5 each box represents a layer and we can get an instance by selecting alternative from these layers.

For example B[D[F[J]]] is valid instance selected from the Fig. 3. The dashed inner box represents the optional

generic layer. GenVoca layers can be implemented in C++ as class templates containing member classes.

Following figure represents the idea of implementing GenVoca layers in C++ (Czarnecki and Eisenecker,

2000).

62

Selforganizology, 2016, 3(2): 59-74

 IAEES www.iaees.org

Fig. 6 Implementation of GenVoca layer in C++ (Czarnecki and Eisenecker, 2000).

Layers can be implemented as structure instead of classes when all members are public (Czarnecki and

Eisenecker, 2000). Structure based upward propagation in GenVoca model is as the following:

Fig. 7 Upward type propagation in a GenVoca model (Czarnecki and Eisenecker, 2000).

In this model each layer requires parameter from the layer below it so, the layer has to pass parameters to

the upper layer even though lower layer do not need any parameters for itself and this results in a problem

when changing layers. So, to address this problem a standard “envelope” has to pass to all layers and this

envelope is known as configurator class or config class. This config class is passed to all layers of GenVoca

domain model. All communication between layers can be done through this config class. This config class

contains the configuration information of all features (Czarnecki and Eisenecker, 2000).

63

Selforganizology, 2016, 3(2): 59-74

 IAEES www.iaees.org

3 Related Work

3.1 Components and Generative Programming

In Czarnecki and Eisenecker (1999), authors presented a GenVoca model based automated approach for

selection and configuration of features. They used the software product line based example of a car feature

model. Requirements mapped into configuration after the selection of correct components. The main thing in

this automation process is configuration knowledge and this converts the problem space to the solution space.

The solution space contains implementation components with all possible components to maximize

combinability and reusability. The problem space contains domain concepts and the required features for

implementation. The configuration knowledge contains features combinations that are not allowed, default

settings, default dependencies and construction rules. GenVoca model implemented with the steps of

identification of main functionality, categorizing the components, identification of dependencies between

components and representing the categories in a layered architecture. After defining grammar we implemented

the selected example components implemented in C++ by bottom-up approach.

3.2 Experience of building an architecture-based generator using GenVocafor distributed systems

In this paper implemented generative programming by using GenVoca model approach by taking a distributed

computing based case study. This helped in automation and reusability (Lung et al., 2010). This case study

contains different distributed architectures i.e. Single Thread (ST), Half-Sync/Half-Async (HS/HA), and

Leader/Followers (LFs). After the implementation using GenVoca Model the generator can instantiate the

required system from the pattern. The development of generator is based on existing client/server (C/S) and

Peer-to-Peer (P2P) systems. The generator developed by reserves engineering and forward engineering to build

reusable components, GenVoca layered structure and corresponding implementation. The tasks carried out in

re-engineering were reverse engineering of existing system and forward engineering (Lung et al., 2010).

The reverse engineering used to understand the problem space and the solution space. In this step both

computing models (C/S and P2P) with three pattern (ST, HA/HA and LFs) studied and main features identified.

In forward engineering, feature model of computing models with their alternatives developed. To construct

GenVoca layering structure, the identified commonalities and variablities were implemented. In forward

engineering step GenVoca Model implemented by considering the basic steps components identification,

defining the layers by adopting bottom-up approach and implementation of identified components in C++ (Lung

et al., 2010).

In above discussed approaches authors implemented feature models in GP. These approaches contains

neither cross tree constraints nor error detection mechanism. In our approach we are going to implement the

inconsistencies based errors detection mechanism which was presented in previous paper (Javed et al., 2015).

Earlier to this we defined levels for the quality of feature model based on errors in (Javed et al., 2014).

4 Generative Programming for Inconsistencies

In this section, we are presenting generator for inconsistencies detection from our selected examples. The

generator is based on the errors defined in section 2.1, i.e., void feature model and invalid instance.

4.1 GenVoca Model for void feature model

The following figure depicts the void feature model because except root no other feature is selectable due to

the cross tree constraint (Trinidad et al., 2008).

64

Selforganizology, 2016, 3(2): 59-74

 IAEES www.iaees.org

Fig. 8 example of void feature model (Felfernig et al., 2013).

In Fig. 8, features texteditor, bash and gui could not be chosen due to the presence of exclusion constraints

between them, whereas the feature games will never get selected because of implies constraint with gui. On the

other hand vi, gedit, kde, gnome, gnuchess and glchess are not selected because the selection of their respective

parent features is not made. Only one feature, i.e., ubuntu can only be selected in the instance, this shows that

this model is void feature model.

4.1.1 Identification and categorizing functionalities in feature model

To implement GenVoca model we have to identify the main functionalities from feature model that will be

used to find dependencies, defining layers and for implementation. The followings are the main categories in

our example depicted in Fig. 8.

Table 1 Functionalities of feature model in Fig. 8

Documentation File Handling User Interface Entertainment

Texteditor Bash Kde Gnuchess

 Gnome Glchess

In above categories, headings represent the main functionalities of the product while the features under

each heading are components to perform the required functionality, but instead of calling them components we

will call them features to clear the concept. The first functionality is “Documentation” which will be

performed by the feature texteditor. For “File Handling” functionality Bash feature will be used. For “User

Interface” one of the features from Kde and gnome is required. Similarly for “Entertainment” we have feature,

Gnuchess and Glchess.

4.1.2 Functional dependencies between features

In-order to perform the functionality some features depend on other. Identification of this dependency will help

to model the layers. Because independent features will be on lower layer and dependent features will be on

upper layer. Following are the dependencies between features.

texteditor depends on gui

games depends on gui

games depends on bash

bash depends on gui

After finding the dependencies we have to represent the functionalities in layers. This is the main step of

GenVoca model.

65

Selforganizology, 2016, 3(2): 59-74

 IAEES www.iaees.org

Fig. 9 GenVoca layer architecture of our example in Fig. 8.

Layers defined in Fig. 9(a), represents the functionalities. These layers are structured on the basis of

dependency by adopting the bottom-up approach. Independent functionalities are on the lower level. In Fig.

10(b) layers further refined by presenting them with features. In Fig. 9(b) we have added two more layers

“Software” at top level and “Configuration” at the bottom.

Ubuntu on the top layer represents the complete software with different functionalities as per user selection

from the feature model. Configurator contains the values of basic properties of features e.g. selected/rejected,

relevance, cross tree constraints. In our example, this configuration is required by all layers in-order to perform

further checks about the selection or rejection of features. The configuration values propagate upward to the

top for all layers.

4.1.3 GenVoca Grammar

In GenVoca model, we select features in top-down approach. On each layer one feature will be selected to

complete the product. To develop a product if we start selecting featured from layered architecture of our

example, the first selection will be ubuntu and on next layer texteditor will be selected. The features on

Entertainment layer are gnuchess or glchess that are optional. For the feature texteditor, we need bash. These

features require Kde or gnome for user interface so, one of the possible instance is

ubuntu[texteditor[bash[Kde]]]. On the basis of this selection procedure, we can define the grammar rules for

our example. These grammar rules are helpful for the implementation of GenVoca layers. Our defined

grammar rules are as follows

ubuntu: ubuntu [File Handling]

File Handling: Text Editor [texteditor] | texteditor

texteditor: texteditor [User Interface] | User Interface

File Handling: File Handling [bash] | bash

bash: bash [User Interface] | User Interface

Entertainment: gnuchess [User Interface] | glChess[User Interface] | Entertainment[]

User Interface: kde[configurator] | gnome [configurator]

Configurator: exclude, selected, relevance, parent,

Please note that our example of Fig. 8 contains games as optional feature. So, in grammar we defined

entertainment with empty set. This represent that games may not be selected.

4.1.4 Implementation

In this section we present the proposed automation process for void feature detection by implementing the

functionalities presented in GenVoca layers. In the proposed process, we develop high quality system for the

66

Selforganizology, 2016, 3(2): 59-74

 IAEES www.iaees.org

detection of void feature models. Main reason behind this effort is to detect the quality of a feature model

automatically. As both errors are caused by the wrong cross-tree constraints so, we focused on this. The

proposed automation process implemented in C++ by using object oriented approach.

• In our approach, every feature requires the values of feature’s properties (i.e. exclude, selected, relevance

and parent) that are on the lower layer.

• The selection or deselection of features depend on its own properties and the properties of features on the

beneath layer.

• Properties required by all feature from bottom layer to the top layer so, we implanted these properties as

configurator. This configurator propagates upward to complete the automation process. For this

configuration we devised configurator class that is presented in Fig. 11. We used objects of this

configurator class to set the properties of features and to pass the values to the upper layer as parameter.

• The configurator class not only collects the values of basic properties and identifies the contradiction of

features due to imply and exclude constraints.

• Here a question arise “If we are implementing proposed technique by considering feature models as case

study then why we are getting input from users?”. The answer is, to evaluate the proposed technique

(explained in section 5. Evaluation).

class configurator {

public:

 bool selected;

 string relevance;

 string parent;

 int total_exclude, total_require, total_required_by;

 char exclude[50];

 string require[50];

 void config(){

 wcout <<"\nWhat is the relevance of Feature? (R=Root, M=Mandatory, O=Optional, A=Alternative, X=OR) ";

 getline(cin, relevance);

 if(relevance !="R")

 {

 wcout <<"\nEnter the Name of Parent feature or press enter:-";

 getline(cin, parent);

 }

 wcout <<"\nHow many features exclude this feature? ";

 cin>> total_exclude;

 for (int i=1; i<=total_exclude; i++)

 {

 wcout <<"Enter relevance of feature that exclude this one(M=Mandatory, O=Optional, A=Alternative, R=OR) "

 cin>>exclude[i];

 }

 wcout <<"How many features required by this feature? ";

 cin>> total_require;

 if(total_require>=1)

67

Selforganizology, 2016, 3(2): 59-74

 IAEES www.iaees.org

 {

 for (int i=0; i<=total_require; i++)

 {

 wcout <<"\nEnter the name of feature that is required by this one:- ";

 getline(cin, require[i]);

 }

 }

if(total_exclude>=1)

{

for (int i=1; i<=total_exclude; i++)

{

 if ((exclude[i] == 'M') || (exclude[i] == 'R'))

 selected =false;

 }

}

 if ((selected != true) && (selected != false))

 selected=true;

 }

 void required_feature(configurator config_require)

 {

 if (config_require.selected == false)

 selected =false;

 }

};

Fig. 10 Implementation of configurator

After the implementing configurator, we consider the functionalities by implementing features. Our main is

task to detect the inconsistencies in a given feature model, these inconsistencies are caused by contradictory

cross tree constraints. So, in the implementation of features, we focused on the detection of cross-tree

constraints. We start implementation from the lower layer to the upper layer. Hence, we implement features i.e.

Kde and gnome, for the functionality of the user interface. We use structures for the implementation in C++.

The implementation of gui feature implanted by the following structure.

1.struct gui{

2. wcout <<"\n\n\t ** Enter the configurrtion of Feature gui ******\n"

3. config_gui.config();

4. if ((config_gui.total_require>=1) && (config_gui.selected==true))

5. {

// to check that required feature is selected or not

6. for (int i=1; i<=config_gui.total_require; i++)

7. {

8. if((config_gui.require[i]=="bash") && (config_bash.selected==false))

9. config_gui.selected=false;

68

Selforganizology, 2016, 3(2): 59-74

 IAEES www.iaees.org

10. if((config_gui.require[i]=="games") && (config_games.selected==false))

11. config_gui.selected=false;

12. if((config_gui.require[i]=="gnuchess") && (config_gnuchess.selected==false))

13. config_gui.selected=false;

14. if((config_gui.require[i]=="glchess")&&(config_glchess.selected=false))

15. config_gui.selected=false;

16. if((config_gui.require[i]=="texteditor")&& (config_texteditor.selected==false))

17. config_gui.selected=false;

18. if((config_gui.require[i]=="ubuntu") && (config_ubuntu.selected==false))

19. config_gui.selected=false;

20 }

21. }

22. if (config_gui.selected==true)

23. {

24. wcout <<"\n gui selected";

25. selected_features[0]="gui";

26. total_selected++;

27. }

28. else

29. wcout <<"\n gui not selected";

30. };

Fig. 11 Implementation of gui feature.

Fig. 11 depicts the implementation of gui feature. In first statement, we define the structure for this feature

with the name of gui. Statement number 2 is to display message for user. Statement number 3 is to call a

method of configurator class. This method is to get values of basic properties of features and to check the

contradictory cross tree constraints. Statement number 4 is to check the implies constraint by gui feature. On

the same statement we are checking that gui is selected or not because if this a feature not selected then no

need to move further. If condition on Statement number 4 is true, it means that gui is selected by the

configurator and also have implies constraint on other feature. In Statement number 6 we are iterating for the

number of required features. Statements 8 to 19 are to check that implied feature is selected or not. If implied

feature not selected then gui will be deselected by setting the value of selected property to false. Statement

number 22 is to detect that after performing all checks, gui is selected or not. If selected then on Statement 24 a

message is being displayed and on Statement 25 gui added in the list of selected features. Statement number 26

counts the total selected features in given feature model. If gui is not selected then Statement 29 displays the

respective message.

Remaining features also implemented in similar fashion, finally it is clear that which feature is selected. On

the basis of selection or rejection we can decide about the void feature model error. Following statements are

to check void feature model error of our example in Figure 8 on the bases of features properties.

1. wcout <<"\n\n\t ********* Rsult ********\n";

2. if(total_selected>=2)

3. {

4. wcout <<" \n Following features selected";

5. for (int i=0; i<= total_selected; i++)

69

Selforganizology, 2016, 3(2): 59-74

 IAEES www.iaees.org

6. cout<<'\n'<< selected_features[i];

7. }

8. else

9. wcout <<"\n\t IT IS A VOID FEATURE MODEL";

Fig. 12 Statements to detect void FM error.

Statements in Fig. 12 are to decide whether feature model in our example is void or not, on the basis of

selection or rejection of features. Statement 1 is to display the heading. Statement 2 is to check if numbers of

selected features are more than one then it is not a void feature model. If condition on statement 2 is true then

statements 4 to 6 will display the selected features. If condition is false it means only one (root feature) or no

feature selected hence, it is void feature.

4.2 GenVoca model invalid instance

The following feature model contains invalid instance error because the mandatory features not selectable

(Segura et al., 2010). We use this feature model as example for the implementation by GenVoca model.

Fig. 13 Feature model with invalid product (Benavides et al., 2010).

Feature model shown in Fig. 13 contains the error of invalid instance because two mandatory features GPS

and Media cannot be selected due to exclusion constraint between them. To get a valid product all mandatory

features should be chosen in an instance (Segura et al., 2010).

4.2.1 Identifying and categorizing the components

We identify and categorize the functionalities as follows

Table 2 Functionalities of feature model in Fig. 13.

Connect Communication Display Entertainment

Calls GPS Basic Media

 High resolution

The first functionality is “Connect” will be done by the feature Calls. For “Communication” functionality

we have GPS feature. For “Display” there are Basic and High resolution alternatively. For “Entertainment” we

have feature, Media.

4.2.2 Functional dependencies between Components

To model the GenVoca architecture layers, we need to find dependencies between features on the bases of

general working. The following are the dependencies between features

70

Selforganizology, 2016, 3(2): 59-74

 IAEES www.iaees.org

Calls depends on Screen

GPS depends on Screen

Media depends on Screen

After finding the dependencies, we present the functionalities in layers.

Fig. 14 GenVoca architecture of our example in Fig. 13.

Dependencies based layers defined in Fig. 14(a) while 14(b) depicts the layers with features.

4.2.3 GenVoca grammar

For the implementation, we define grammar rules of our example on the basis of top-down selection. Our

defined grammar rules are as follows

Mobile Phone: Mobile Phone [Connect]

Connect: Connect [Calls] | Calls

Calls: Calls [Display] | Display

Communication: Communication [GPS] | GPS

GPS: GPS [Display] | Display

Entertainment: Entertainment[Media] | Entertainment []

GPS: GPS [Display] | Display

Display: Display[configurator]

Configurator: exclude, selected, relevance, parent,

Our example, depicted in Fig. 13 contains Media as optional feature. So, in grammar we define

Entertainment with empty set. This represent that Media may not be selected.

4.2.4 Implementation

We are going to present the proposed automation process for invalid instance error detection by implementing

the functionalities presented in layers. Inconsistency based errors occur due to wrong tree constraints so, we

focused on this. The proposed automation process implemented in C++ by using object oriented approach.

It is implemented in similar fashion as we have done for the void feature model in section 4.1. We are

using the same configurator to store the values of feature’s properties that is already explained in Section (use

number here).

1. struct Screen{

2. wcout <<"\n Enter the configurrtion of Feature Screen \n";

3. config_Screen.config();

71

Selforganizology, 2016, 3(2): 59-74

 IAEES www.iaees.org

4. if ((config_Screen.total_require>=1) && (config_Screen.selected==true))

5. {

// to check that required feature is selected or not

6. for (int i=1; i<=config_Selected.total_require; i++)

7. {

8. if((config_Screen.require[i]=="Calla") && (config_calls.selected== false))

9. config_Screen.selected=false;

10. if((config_Screen.require[i]=="GPS") && (config_GPS.selected== false))

11. config_Screen.selected=false;

12. if((config_Screen.require[i]=="Media") && (config_Media.selected==false))

13. config_Screen.selected=false;

14.

15. }

16. }

17. if (config_Screen.selected==true)

18. {

19. wcout <<"\n Screen selected";

20. selected_features[0]="Screen";

21. total_selected++;

22. }

23. else

24. {

25. wcout <<"\n Screen not selected";

26. if ((config_Screencvbfgh.relevance=="M") || (config_Screen.relevance =="m"))

27. mandatory_not_selected++;

28. }

29. };

Fig. 15 Implementation of Screen feature.

In Fig. 15, we present implementation of Screen feature. Statements 1 to 25 are same as explained in

Figure 13. Statement 26 is to check the mandatory relevance of the features because if mandatory feature is not

selected then this feature model will generate invalid instances. If condition being means that it is mandatory

feature hence, Statement 27 is to calculate the mandatory features which are not selected. This will help to

decide about invalid instances. If one or more than one mandatory features are not selected then this feature

model will generate invalid instances.

5 Validation of Proposed Technique

The proposed technique automates the detection of inconsistencies in the feature models, so it should work

accurately. To get the required output, all components (structures and classes) are tested separately and then

joining them as a single software product. For testing, all possible combinations of instances with cross-tree

constraints are entered. To test the technique, we implemented configurator that gets input of feature’s

properties from the user. User can enter any values of the properties of features from the feature models

depicted in Figs 9 and 14. If a user enters the same values of feature’s properties with same cross-tree

72

Selforganizology, 2016, 3(2): 59-74

 IAEES www.iaees.org

constraints, the result will be the required error but if the inputted values of features properties changed then

output will be changed accordingly.

6 Conclusion

The feature models are used to develop the products so the quality of feature model is very important. If the

feature model contains any kind of deficiency then the resulting product will be of low quality. One of the

main reasons of deficiency in feature model is existence of errors. Inconsistency based errors are very harmful

so, they degrade the quality of a feature model.

Our technique automate the detection of inconsistency based errors by adopting the state of the art model

i.e. GenVoca layered architecture. By using the GenVoca model, we tried to detect both void feature model

and invalid instance errors. We adopted the steps of GenVoca model for implementation. On first step, we

identified and categorized the features on the basis of functionalities of the selected example. In second step,

we define the dependencies of features. These dependencies are on functionality basis. When dependencies are

listed, we stack the functionalities in layers. The layered architecture is in bottom-up approach. The

independent functionality of feature model is on bottom layer and dependent on top layers.

In GenVoca layered architecture, each layer gets some parameter from the layer beneath it. This layered

architecture further refined and each of the functionality presented with concern features. In refined layered

architecture, we also added two more layer configurator in bottom and with complete product on top most

layer. Configurator contains the configuration information of all features so, propagate upward to the top. Then

we defined the GenVoca grammar for our example on the basis of top-down feature selection procedure. Next

one is the main and required step of GenVoca model is implementation. All components implemented in C++.

All components implemented in bottom approach so, configurator implemented. In configurator we allowed

user to enter the values to validate the technique. After configurator all features implemented to detect the

inconsistencies.

References

Batory D, Benavides D, Antonio R. 2006. Automated analysis of feature models: challenges

ahead. Communications of the ACM, 49(12): 45-47

Batory D. 2005. Feature models, grammars, and propositional formulas. Software Process Improvement and

Practice, 1: 7-20

Benavides D, Segura S, Ruiz-Cortés A. 2010. Automated analysis of feature models 20 years later: A literature

review. Information Systems, 35(6): 615-636

Benavides D. 2007. On the Automated Analysis of Software Product Lines Using Feature Models. Dissertation,

Universidad de Sevilla, Spain

Böckle G, Van Der Linden F. 2005. Software Product Line Engineering Vol. 10 (Klaus Pohl, ed). Heidelberg,

Springer, Germany

Clements P. 2001. Software Product Lines: Practices and Patterns. Addison-Wesley Longman Publishing Co

Inc, Boston, MA, USA

Czarnecki K, Eisenecker UW. 2000. Generative Programming Methods, Tools, and Applications. Addison

Wesley, USA

Czarnecki K, et al. 2000. Generative Programming and Active libraries. 25-39, Springer Berlin Heidelberg,

Germany

Czarnecki K, Eisenecker UW. 1999. Components and Generative Programming. In: Proceedings of the 7th

73

Selforganizology, 2016, 3(2): 59-74

 IAEES www.iaees.org

European Software Engineering Conference (Nierstrasz O, Lemoine M, eds). 2-19, Toulouse, France

Felfernig A, David B, Galindo J, Reinfrank F. 2013. Towards Anomaly Explanations in Feature Models.

In: Proceedings of the 15th International Configuration Workshop (ConfWS-2013). 117-124

Javed M, Naeem M, Wahab HA. 2014. Towards the maturity model for feature oriented domain analysis,

Computational Ecology and Software, 4(3): 170-182

Javed M, Naeem M, Wahab HA. 2015. Semantics of the Maturity Model for Feature Oriented Domain

Analysis. Computational Ecology and Software, 5(1): 77-112

Kang K, et al. 1990. Feature-oriented domain analysis (FODA) feasibility study. Technical Report,

Carnegie-Mellon University Pittsburg, SEI, USA

Lung. Chung-Horng, et al. 2010. Experience of building an architecture-based generator using GenVoca for

distributed systems. Science of Computer Programming, 75: 672-688

Maßen T, Horst L. 2004. Deficiencies in feature models. In: Proceedings of the Workshop on Software

Variability Management for Product Derivation - Towards Tool Support. Collocated with the 3rd

International Software Product Line Conference (SPLC'04). Springer Berlin Heidelberg, 3154: 331-331

Naeem M. 2012. Matching of Service Feature Diagrams based on Linear Logic. Dissertation, Department of

Computer Science, University of Leicester, UK

Rosso CD. 2006. Experiences of performance tuning software product family architectures using a

scenario-driven approach. In: Proceedings of the 10th International Conference on Evaluation and

Assessment in Software Engineering (EASE 2006). 30-39

Segura S, et al., 2010. FaMa Test Suite v1.2. Technical Report ISA-10-TR-0. 1-52, Applied Software

Engineering Research Group, University of Seville, Spain,

Thomas E. 2008. SOA: Principles of Service Design (Vol. 1). Prentice Hall, USA

Trinidad P, et al. 2008. Automated error analysis for the agilization of feature modelling. Journal of Systems

and Software, 81(6): 883-896

74

