
Selforganizology, 2016, 3(3): 100-116

IAEES www.iaees.org

Article

An algorithm to transform natural language into SQL queries for

relational databases

Garima Singh, Arun Solanki

Department of Computer Science and Engineering, Gautam Buddha University, Greater Noida, India

E-mail: garima_singh911@yahoo.com

Received 12 April 2016; Accepted 18 May 2016; Published online 1 September 2016

Abstract

Intelligent interface, to enhance efficient interactions between user and databases, is the need of the database

applications. Databases must be intelligent enough to make the accessibility faster. However, not every user

familiar with the Structured Query Language (SQL) queries as they may not aware of structure of the database

and they thus require to learn SQL. So, non-expert users need a system to interact with relational databases in

their natural language such as English. For this, Database Management System (DBMS) must have an ability

to understand Natural Language (NL). In this research, an intelligent interface is developed using semantic

matching technique which translates natural language query to SQL using set of production rules and data

dictionary. The data dictionary consists of semantics sets for relations and attributes. A series of steps like

lower case conversion, tokenization, speech tagging, database element and SQL element extraction is used to

convert Natural Language Query (NLQ) to SQL Query. The transformed query is executed and the results are

obtained by the user. Intelligent Interface is the need of database applications to enhance efficient interaction

between user and DBMS.

Keywords natural language query interface; natural language processing; ambiguity; SQL.

1 Introduction

In the present fast computing scenario, computer based information retrieval technologies are being highly

used to help academic and education institutions organizations, companies to manage their information

systems and processes. These are used to manage data that is capable of managing different kinds of data

which are stored in the databases also known as DBMS (Rukshan et al., 2013). Despite Information retrieval

of a large amount of data being efficient in relational databases, the user still needs to master the DB

language/schema to completely formulate the queries. Artificial Intelligence (AI) and Linguistics can be

combined to develop programs that can help to understand and produce information in a natural language

Selforganizology
ISSN 24100080
URL: http://www.iaees.org/publications/journals/selforganizology/onlineversion.asp
RSS: http://www.iaees.org/publications/journals/selforganizology/rss.xml
Email: selforganizology@iaees.org
EditorinChief: WenJun Zhang
Publisher: International Academy of Ecology and Environmental Sciences

Selforganizology, 2016, 3(3): 100-116

IAEES www.iaees.org

(Johnson, 1985; Mckay and Finin; 1990; Wan; 2000; Mohite and Bhojane, 2014; Javubar and Jay, 2015).

Database based NLP is thus an important success in processing Natural Language. It is a convenient way of

data access by asking questions in natural language to get answers since a layman might not understand the

database query language. A NLQ Interface to Database system is an application that accepts a natural language

query, creates a SQL query from it and executes it to retrieve the data from relational database. The result

retrieved from the database is a stream of elements. The query is generated by identifying the lexical relations

of the elements of the NLQ (Gupta and Sangal, 2012). The building of robust and applicable NLIDBS has

become acute in recent years. The amount of information on the Internet has grown steadily and also wider

population may now access data stored in a variety of repositories via web browsers (Nihalani et al., 2011).

Thus NLIDBS are built for to optimize the search results and produce information with more accuracy. The

present research extends the existing work further by processing more complex queries along with ambiguity

removal.

From the past many years, unending attempts have been made to build efficient natural language query

interface. There have been a lot of research works introducing some new theories and implementations of

NLIDBs. But the product produced didn’t map the desired expectation. LUNAR, launched in 1973 was a

system that handled queries related to samples of rock which was brought back from the moon. It used an

Augmented Transition Network (ATN) parser and Woods' Procedural Semantics. LIFER/LADDER was one of

the best database language processing systems. It was designed to retrieve information regarding US Navy

ships. It used semantic grammar to parse user queries in natural language. It could only handle queries related

to one table or multiple table queries with easy join conditions. Another general architecture for an intelligent

database interface was proposed (Nahalani et al., 2011) whose main characteristic was domain-independence,

which means this interface could be used with any database. The interface employs semantic matching

technique to convert natural language query to SQL using dictionary and set of production rules. Sontakke and

Pimpalkar (2014) introduced a system for people who are snug with Hindi language. The application accepted

Hindi sentence as a query, processed it and after execution provided the result to the user in Hindi language

itself. Authors developed the rule based system which satisfied the user need by accepting Hindi language as

query and the output is displayed in Hindi language only. Savvy, which is a typical application of pattern

matching framework (Poole and Mackworth, 2010), uses various patterns written in some different kind of

queries which are then executed after the complete queries are entered. The systems are very easy to

implement as no elaborate parsing and modules of interpretation are required.

Despite attainment of so many achievements, the present day NLIDBs do not guarantee translation of

queries in natural language to database languages. This research design and implements a system called as

Natural Language to SQL Convertor (NLTSQLC). It will work to convert a NLP Query to SQL Query.

2 Proposed System Architecture

The proposed system is designed to minimize the communication gap between a human and computer. It is

developed to facilitate improved interaction between the two. As it is known databases can only respond to

standard queries written in SQL and it is very less possible for a common person to know SQL. Also they

might not be aware of the database schema including table names, formats, their fields and the corresponding

types. Thus keeping these things in mind, a system is designed which contains an intelligent layer that accepts

common user’s sentences in natural language as input, converts these sentences into standard SQL queries and

executes them to retrieve data from relational databases. The designed system has the following characteristics:

 It can handle ambiguities in NLQ such that the tables with same attribute name clashing are

minimized.

101

Selforganizology, 2016, 3(3): 100-116

IAEES www.iaees.org

 The interface can be configured easily and automatically. It relies on the Metadata set and Semantic

sets for tables and attributes.

 The system is designed to accept any relational database schema which is responsible for the

intelligent information processing and performing flexible queries.

Fig. 1 Three-Tier Architecture of NLTSQLC.

3 NLP Rules Used for System Development

In the desired approach, some predefined structures are employed and the system is trained accordingly. The

primary advantage of these structures is that they can be expanded whenever some new knowledge is

discovered. It uses

 The escape word set (Ew) which contains the list of stop words that occur in NLQ as shown in Table 1.

 The Expression mapping set (Emap) which contains the list of conditional clauses which might occur in

NL query and their associated mathematical symbols as shown in Table 2.

 A Noun set (N) that contains all elements which are nouns (Table 3) and strictly limited to provided

data

Dictionary of attribute & relation names and further Relation set and Attribute set are extracted from

N.

 A Verb set (V) that contains all elements which are verb (Table 4) and act as criteria for forming

clauses.

 The semantic set (S) contains the list of all possible semantics related to table names and fields in the

database as shown in table-5 and table-6

 A Variable set (Va) that consists of all String and Integer variables used in forming clauses.

 A Relation set (R) consists of relation names that are encountered in user query or are added by

analyzing the attribute names present in the NL query.

 An Attribute set (A) that contains all attributes present in the user query.

 An Ambiguity check set (Ac) that contains all attribute fields whose name are used in multiple relation

as a field name excluding keys.

102

Selforganizology, 2016, 3(3): 100-116

IAEES www.iaees.org

 The Conjunction training set (CT) consists of the list of Conjunctive clauses which occur in NL query

and this set is generated at runtime. Whenever new conjunctive clause is encountered, it is appended

to the existing Conjunction training set.

Table 1 Escape words list.

Table 2 Rules for function ‘BETWEEN’.

Table 3 Noun list.

Table 4 Verb list.

 Table 5 Rules for attributes in relations.

Rule Rule Symbol Rule Description
Marks Student Attribute for Relation ‘student’
Roll_no Student Attribute for Relation ‘student’
Emp_id Teacher Attribute for Relation ‘teacher’
Name Student

Teacher
Subject

Attribute for Relation ‘student’
Attribute for Relation ‘teacher’
Attribute for Relation ‘subject’

Age Teacher Attribute for Relation ‘teacher’
Subject_code Student

Teacher
Subject

Attribute for Relation ‘student’
Attribute for Relation ‘teacher’
Attribute for Relation ‘subject’

Taught_by Student
Teacher

Attribute for Relation ‘student’
Attribute for Relation ‘teacher’

A An The Select
find which whose Is
Of A With To
 for Are And What

Rule Rule
Symbol

Rule Description

Between BETWEEN Rule for function
‘BETWEEN’

Range BETWEEN Rule for function
‘BETWEEN’

Ranges BETWEEN Rule for function
‘BETWEEN’

Lies BETWEEN Rule for function
‘BETWEEN’

student Subject Teacher Marks
Age roll_no subject_code Name
taught_by Details Subjectwise Id

Between less than
Max greater than
Min equal to

103

Selforganizology, 2016, 3(3): 100-116

IAEES www.iaees.org

Table 6 Rules for relation name ‘teacher’.

Rule Rule Symbol Rule Description
Teacher Teacher Rule for Relation ‘teacher’
Teachers Teacher Rule for Relation ‘teacher’
Faculty Teacher Rule for Relation ‘teacher’
Professor Teacher Rule for Relation ‘teacher’

4 Database Design and Implementation

The present research uses MySQL DBMS as backend. The database schema is an organization of the

important information that briefly describes the relation and attributes in the database. Here, Table 7 shows the

database schema of the Student database which is generated by the system. The schema holds entries for all the

‘n’ tables (relations) in the database along with all their corresponding fields (attributes) and their unique

primary key described in the figures below

 Table 7 Rules for database schema.

Relation Name Foreign Key Primary Key
Student subject_code roll_no
Subject subject_code subject_code
Teacher subject_code taught_by

 Fig. 2 Llist of relations in the database namely Student, Teacher and Subject.

Fig. 2 Relations in database.

The Relation Student has four attributes which are roll_no, name, subject_code and marks as shown in Fig.

3. Roll_no is the primary key of this relation and the foreign key is subject_code.

104

Selforganizology, 2016, 3(3): 100-116

IAEES www.iaees.org

Fig. 3 Attributes in Relation ‘Student’.

The Relation Subject has three attributes which are name, subject_code and taught_by as shown in figure-4.

Subject_code is the primary key of this relation and the foreign key is also subject_code.

Fig. 4 Attributes in Relation ‘Subject’.

The Relation Teacher has four attributes which are taught_by, name, subject_code and age as shown in

figure-5. Taught_by is the primary key of this relation and the foreign key is subject_code.

Fig. 5 Attributes in Relation ‘Teacher’.

Terms used in NLTSQLC are:

M = {T, F, P, F}, 0 < y < (n +1) , where

M=Database for System

T=Set of tables in M (as shown in figure-2)

F=Set of all fields in T (as shown in figure-3,4,5)

P=Primary Key in T

105

Selforganizology, 2016, 3(3): 100-116

IAEES www.iaees.org

F=Foreign key in T

5 Process Flow of NLTSQLC

The system analyses and executes an NLQ in series of steps and at each stage the data is further processed to

finally form a query leading to its execution. At the end the results are fetched from the database and the

output is displayed to the user on the GUI as shown in Fig. 6.

 Fig. 6 Process control flow diagram.

The description of the system is as follows:

1. User Interface: The user interacts with the system via GUI and types his/her NLQ.

2. Lowercase Conversion: The NLQ is then translated into lowercase.

3. Tokenization: The query after lowercase conversion is then converted into stream of tokens and a

token id is provided to each word of NLQ.

4. Escape word removal: The extra/stop words are removed which are not needed in the analysis of

query.

5. Part Of Speech Tagger: The tokens are then classified into nouns, pronouns, verb and string/integer

variables.

6. Relations-Attributes-Clauses Identifier: Now the system classifies the tokens into relations, attributes

and clauses on the basis of tagged elements and also seperates the Integer and String values to form

clauses.

106

Selforganizology, 2016, 3(3): 100-116

IAEES www.iaees.org

7. Ambiguity Removal: It removes all the ambiguous attributes that exists in multiple relation with the

same attribute name and maps it with the correct relation.

8. Query Formation: After the relations, attributes and clauses are extracted, the final query is

constructed.

9. Query Execution and Data Fetching: The query is then executed and data is fetched from the database.

10. Results: The final query result is displayed to the user on the GUI.

6 Implementation and Working of NLTSQLC

The system is developed and implemented in PHP,HTML,CSS and Javascript as front-end and the database is

implemented in MySQL as the back-end.

1. Graphical User interface: As shown in Fig. 7, the interactive GUI allows user to enter the query. It

allows him/her to enter the question in a natural language which will be further processed by the

system.

Fig. 7 Graphical User Interface.

2. Lower case Conversion: It checks all the words in the user question and converts it into lower case as

shown in Fig. 8.

Fig. 8 Lower case conversion.

107

Selforganizology, 2016, 3(3): 100-116

IAEES www.iaees.org

3. Tokenisation: It firstly scans the whole question and then splits the question string into tokens and

gives an order number to each token identified, as shown in Fig. 9.

Fig. 9 Tokenisation.

4. Escape Word Remover: It removes all words which are not needed in the query and only select those

words related to the database content. It store the number of identified SQL elements in arrays shown

in Fig. 10.

Fig. 10 Escape word Remover.

108

Selforganizology, 2016, 3(3): 100-116

IAEES www.iaees.org

5. Noun-Pronoun-Verb Tagger: It tags the extracted tokens as noun, pronoun or verb and further

classyfying them into SQL elements in arrays as shown in Fig. 11.

Fig. 11 Noun-Pronoun-Verb Tagger.

6. Relations-Attributes-Clauses Identifier: It after tagging the elements into noun-verb-pronoun, then

classifies them relations, attributes and clauses on the basis of tagged elements. It also sepearates the

Integer and String values for forming the clauses, as shown in Fig. 12.

Fig.12 Relations-Attributes-Clauses identifier.

7. Ambiguity Remover: It removes all the ambiguous attributes existing multiple times and extracts the

most apt attribute and maps it with the relation as shown in Fig. 13.

109

Selforganizology, 2016, 3(3): 100-116

IAEES www.iaees.org

Fig. 13 Ambiguity Remover.

8. Query Generation: After classifying the relations, attributes and clauses and further removing

ambiguities, the final query is generated on the basis of extracted elements as shown in Fig. 14.

Fig. 14 Query generation.

9. Results: The SQL query is executed and results are fetched and displayed to user as shown in Fig. 14.

7 Results

To assess the old and new systems,question set consisting of 28 NLQ questions and 50 NLQ questions were

fired. Based on the type of queries, confusion matrix (Tables 8, 9, 10, 11) is created and based on its values

various performance factors are evaluated. The Tables 12,13,14 indicates the results that were computed using

the values in Confusion Matrix. Same dataset are used to find the result on both system.

110

Selforganizology, 2016, 3(3): 100-116

IAEES www.iaees.org

Table 8 Confusion Matrix for NLTSQLC (on 28 queries fired).

To assess and check the accuracy of systems, evaluation was done based on metrics:

 Recall : The proportion of positive case queries which are correctly identified.

Recall(R) = A/(A+B)

 Accuracy : The proportion of total number of positive predictions which were correct.

Accuracy = (A+D)/(A+B+C+D)

 Table 9 Confusion Matrix for NLIDBS (on 28 queries fired).

Table 10 Confusion Matrix for NLTSQLC (on 50 queries fired).

Table 11 Confusion Matrix for NLIDBS (on 50 queries fired).

111

Selforganizology, 2016, 3(3): 100-116

IAEES www.iaees.org

 The false positive rate (FPR) : It is the proportion of negatives case queries which are incorrectly

classified as positive.

FPR= C/(C+D)

 The true negative rate (TNR) : It is defined as the proportion of negatives case queries which are

classified correctly.

TNR= D/(C+D)

 The false negative rate (FNR) : It is the proportion of positives case queries which are incorrectly

classified as negative.

FNR= B/ (A+B)

 Precision : It is the proportion of the predicted positive case queries which are correct.

Precision (P) = A/ (A+C)

 F-measure : It computes some average of the information retrieval precision and recall metrics.

F-measure= 2PR/ (P+R)

Table 12 Comparison between NLIDBS and NLTSQLC (for 28 queries fired).

S.No. Performance Factors Old System-NLIDBS New System-NLTSQLC

1)
Recall or True Positive
Rate (TPR) or Sensitivity

0.6

0.8

2) Accuracy 0.678 0.821

3) Error Rate 0.321 0.178

4) False Positive Rate 0.125 0.125

5) True Negative Rate 0.875 0.875

6) False Negative Rate 0.4 0.2

7) Precision 0.923 0.941

8) F-Measure 0.727 0.864

As it can be seen from the Table 12, NLTSQLC has recall value of 0.8 whereas NLIDBS has a recall value

of 06. The F-measure for NLIDBS is 0.727 whereas NLTSQLC has 0.864. The accuracy for the new system is

0.821 whereas for the old system it is 0.678. The values for FNR is also low in NLTSQLC. Thus NLTSQLC

better values for recall, accuracy, FNR, F-measure with decrease in error rate as compared to NLIDBS.

However there is a minimal increase in Precision which can be firther improved in the furture work. Hence the

new system, NLTSQLC, is an improved version of existing system.

112

Selforganizology, 2016, 3(3): 100-116

IAEES www.iaees.org

Fig. 15 Comparison between NLIDBS and NLTSQLC (for 28 queries fired).

As it can be seen from the Fig. 15, the peak for accuracy, F-measure, and recall is greater for NLTSQLC as

compared to NLIDBS. Also the error rate is lower for the new system. The peak for precision is almost at

same height for both the systems which can be improved further in the future work. Thus, we may conclude

that the NLTSQLC has better results and is an improved system.

Table 13 Comparison between NLIDBS and NLTSQLC (for 50 queries fired).

S.No. Performance Factors Old System-NLIDBS New System-NLTSQLC

1)
Recall or True Positive
Rate (TPR) or Sensitivity

0.621 0.8

2) Accuracy 0.66 0.8

3) Error Rate 0.34 0.2

4) False Positive Rate 0.23 0.231

5) True Negative Rate 0.769 0.769

6) False Negative Rate 0.37 0.189

7) Precision 0.88 0.909

8) F-Measure 0.729 0.851

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall or
TPR

Accuracy Error Rate FPR TNR FNR Precision F-Measure

Old System-NLIDBS New System-NLTSQLC

113

Selforganizology, 2016, 3(3): 100-116

IAEES www.iaees.org

From the Table 13 above, the performance of NLTSQLC is again better than NLIDBS when NLQ

questions were increased to 50. The Accuracy is 0.8 for NLTSQLC whereas the NLIDBS has an accuracy of

0.621. The Precision for the new system design is 0.9 whereas the old system it is 0.88. The F-measure and

Recall values for the new system design are also more than the old system.

Fig. 16 Comparison between NLIDBS and NLTSQLC (for 50 queries fired).

Fig. 16 shows higher peaks for Recall, Accuracy, Precision and F-measure in the NLTSQLC system. The

error rate in the new system is also decreased and hence the performance of NLTSQLC is better than NLIDBS.

 Table 14 Comparison between performance of NLTSQLC for 28 NLQ and 50 NLQ.

S.No. Performance Factors For 28 queries For 50 queries

1)
Recall or True Positive
Rate (TPR) or Sensitivity

0.8 0.8

2) Accuracy 0.8 0.8

3) Error Rate 0.178 0.2

4) False Positive Rate 0.125 0.231

5) True Negative Rate 0.875 0.769

6) False Negative Rate 0.2 0.189

7) Precision 0.941 0.909

8) F-Measure 0.864 0.851

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall or
TPR

Accuracy Error Rate FPR TNR FNR Precision F-Measure

NLTSQLC vs NLIDBS

Old System-NLIDBS New System-NLTSQLC

114

Selforganizology, 2016, 3(3): 100-116

IAEES www.iaees.org

Table 14 shows the comparison between the performance of NLTSQLC when the NLQ were increased

from 28 to 50. The Recall rate and Accuracy is remained unchanged and has a value of 0.8 but there is slight

decrease in F-measure and Precision of the system on increasing the number of queries.

Fig. 17 Comparison between performance of NLTSQLC for 28 NLQ and 50 NLQ.

Fig. 17 shows the comparison on increasing the NLQ from 28 to 50. The NLTSQLC is tested and the

peaks for Recall and Accuracy are at the same height. The Precision and F-measure has a slight decrease.

8 Conclusion and Future Work

In this research, the proposed NLTSQLC system is designed to handle challenges in NLQ processing. The aim

is to evaluate correct sql translations for NLQ. The intelligent interface developed uses semantic matching

technique which translates natural language query to SQL. It also uses set of production rules and data

dictionary which consists of semantics sets for relations and attributes. A series of steps like lower case

conversion, tokenization, speech tagging, database element extraction, SQL element extraction and ambiguity

removal is used to convert Natural Language Query (NLQ) to SQL Query. The validation of the prototype has

shown improved performance. The results show that the system had improved Recall, FNR, error rate and

Accuracy. However, there was minimal change in precision, TNR and FPR which can be resolved in the future

work.

References

Gupta A, Sangal R. 2012. A Novel Approach to Aggregation Processing in Natural Language Interfaces to

Databases. Language Technologies Research Centre International Institute of Information Technology,

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall or
TPR

Accuracy Error Rate FPR TNR FNR Precision F-Measure

On 28 queries fired on 50 Queries fired

115

Selforganizology, 2016, 3(3): 100-116

IAEES www.iaees.org

Hyderabad, India

Javubar SK, Jay A. 2015. Natural language to SQL generation for semantic knowledge extraction in social

web sources. Indian Journal of Science and Technology, 8(1): 1-10

Johnson T. 1985. Natural Language Computing: The Commercial Applications. Ovum Limited, London, UK

Mckay DP, Finin TW. 1990. The intelligent database interface: Integrating AI and database systems.

Proceedings of the 1990 National Conference on Artificial Intelligence. 677-684

Mohite A, Bhojane V. 2014. Challenges and implementation steps of natural language interface for

information extraction from database. International Journal of Recent Technology and Engineering, 3(1):

108

Nihalani N, Motwani M, Silakari S. 2011. An intelligent interface for relational databases. International

Journal of Simulation: Systems, Science and Technology, 11(1): 29

Poole D, Mackworth A. 2010. Artificial Intelligence-Foundations of Computational Agents.

http://artint.info/index.html

Rao G, Agarwal C, Chaudhry S, et al. 2010. NATURAL LANGUAGE QUERY PROCESSING USING

SEMANTIC GRAMMAR. International Journal on Computer Science and Engineering, 2(2): 219-223

Rukshan A, Rukshan P, Mahesan S. 2013. Natural Language Web Interface for Database (NLWIDB).

Proceedings of the Third International Symposium. SEUSL, Oluvil, Sri Lanka

Sontakke AR, Pimpalkar A. 2014. A rule based graphical user interface to relational database using NLP.

International Journal of Scientific Engineering and Research, 3(4): 81-84

Sreenivasulu M. 2014. Information retrieval using natural language interfaces. International Journal of

Computer Applications, 92(12): 34-37

Wan FJ. 2000. A fuzzy grammar and possibility theory – based natural language user interface for spatial

queries. Fuzzy Sets and Systems, 113: 147-159

116

