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Abstract

In present study, | proposed a method to screen node attributes that significantly influencing node centrality in
the network. One of four node centralities, degree centrality, closeness centrality, betweenness centrality, and
circuit centrality, can be used as the dependent variable and attribute-by-node data are used as the data of
independent variables. Stepwise linear regression method was applied to screen statistically significant node
attributes from candidate attributes. Matlab codes of the algorithm are provided also.

Keywords network; node attributes; node centrality; attribute screening; stepwise linear regression.

Selforganizology

ISSN 2410-0080

URL: http://www.iaees.org/publications/journals/selforganizology/online-version.asp
RSS: http://www.iaees.org/publications/journals/selforganizology/rss.xml

E-mail: selforganizology@iaees.org

Editor-in-Chief: WenJun Zhang

Publisher: International Academy of Ecology and Environmental Sciences

1 Introduction

In nature, many networks are created by connections between nodes that have some correlations, similarities or
complementarities in node attributes (Zhang, 2011, 2012a, 2012b, 20153, 2015c). They include, for example,
networks of protein-protein interactions, ecological networks, some social networks, etc. Node attributes
determine the evolution and topological structure of such networks. However, in most cases, we do not know
which attributes are significant or crucial. Utilization of insignificant attributes will increase the noise of
network information. Thus it is necessary to screen significant node attributes from a lot of candidate attributes.
In present study, | try to propose a method to screen node attributes that significantly influence node centrality
in the network.

2 Algorithm

Suppose there is a weighted network X with m nodes (Zhang, 2012a), its weighted adjacency matrix is
d=(dij)mxm. dij=wij, if two nodes v;and v;are adjacent, and d;;=0, if v;and v;are not adjacent, where w;; is the
weight of the link from node v;to node v;, i, j=1,2,..., m. For unweighted network, w;=1, if two nodes v;and v;
are adjacent, i, j=1,2,..., m. Adjacency matrix d is a symmetric matrix, i.e., d=d’. Known n candidate
attributes (i.e., traits) for m nodes (e.g., for m proteins, the attributes can be pH, isoelectric point, molecular
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weight, or for m species, they can be n alleles, etc.). The raw data matrix is X=(Xij)nxm.

First, calculate the following centrality indices of nodes, which represent one of the topological
properties of a network (Shams and Khansari, 2014; Zhang, 2012a, 2012b, 2012c; Khansari et al., 2016).

(1) Degree centrality. It is a local centrality based on neighbourhood. It reflects the node influence on its
neighbourhoods. A node degree centrality is the sum of the weights of the links attached to that node. It
represents the whole involvement of a node in the network (Opsahl et al., 2010; Khansari et al., 2016)

n

Yi = Z Wi
j=1
where w;; is the weight of link from node i to j.

(2) Closeness centrality. It is a distance-based measure. For a distance-based measure, different values
(cost, connection strength, etc.) can be assigned to different links in weighted networks. It is a global centrality
which represents the independence of a node in the network (Freeman, 1978). Closeness centrality is defined
as reciprocal of the sum of the node’s geodesic distances to all other nodes (the distances of the shortest paths)
in the network

where, dj is the weighted geodesic path between node i to j. Dijkstra algorithm (Dijkstra, 1959; Zhang, 2012a)
is used to calculate the shortest path and corresponding distance between two nodes.

(3) Betweenness centrality. It is a distance-based measure. It represents the node’s ability to control the
data flow in the network (Freeman, 1978). This measure is the proportion of number of geodesic paths that
pass through the given node to total number of geodesic paths between any pair of nodes in the network
(Khansari et al., 2016)

y, =n;/s

where n; is the number of weighted geodesic paths which pass through node i, and s is the total number of
weighted geodesic paths between any pair of nodes in the network.

(4) Circuit centrality. Here | proposed circuit centrality to characterize the contribution of a node in
different possible subgraphs. It is a distance-based measure and based on the concept of subgraph centrality
(Khansari et al., 2016). This measure is the proportion of number of fundamental circuits (i.e., cycles, or closed
paths, or loops, see Paton (1969) and Zhang (2012a)) that pass through the given node to total number of
fundamental circuits in the network

y, =n,/s

where n; is the number of fundamental circuits which pass through node i, and s is the total number of
fundamental circuits in the network.

In present study, | use the stepwise linear regression to screen node attributes. The stepwise linear
regression is a multi-variable regression that can screen statistically significant variables into the linear
regression equation (Zhang and Fang, 1982). The full multi-variable linear regression equation is (Qi et al.,
2016)

y=bg+ by X3+ by Xo+...+ by X,
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where ¥; is the i-th attribute. Let

m m m
lii= li=2 Xk Xik-[XXik XXk J/m
k=1 k=1 k=1

m m m
liy=>Xik Yk-[>Xik XYk I/m
k=1 k=1

k=1

i,j=1,2,...,n
Correlation coefficients between-attibute and between attribute and centrality index y are

rij=lig/ (L |jj)0'§5
Fiy=liy/ (lii lyy)™

Solve the equation
rab’1+ righ’, +..+ ripb’n=ry
i=1,2,...,n
The variance contribution of each attribute is

Vi 1y’ i
Let vi=max v;, and calculate F=(m-I-1)vi/q, where | is the number of attributes screened into the equation, q is

the square of residuals. For first screening, q=vi. If F>F,, screen the attribute x, into the equation (F,=0.1, etc.),
or else remove xx. The correlation matrix are changed as the following

Fii=Tij=Fik N/ M I, J7k

rkj:rk,-/rkk j?fk, i=k
r,-k:-rjk/rkk j#k, i=k
Ma=1/Tik i=k, j=k

where K is the k-th screened or removed attribute. Calculate v(1+1)=max v;(I+1), and F=(m-1-2) v,(1+1)/(q(l)-
vi(I+1)). If F(I+1)=F,, screen the attribute x into the equation, and change the correlation matrix. Let vi=max
Vi, where X is the attribute already in the equation, F,=(m-1-1) vi(1)/q(l), where q is the ryy, in the inverse matrix
of correlation matrix. If F<F,, remove the attribute x, from the equation, otherwise screen into the attribute.
Repeat the procedure above, until no attribute can be screened into or remove from the equation.

By doing so, the linear regression equation is obtained as the following

y =b, +b;x, +...+5jxj + o by X,

and the attributes remained in the equation are qualified node attributes.
The following are Matlab codes (nodelndicesScreen.m) of the algorithm

%Reference: Zhang WJ. 2016. Screening node attributes that significantly influence node centrality in the network.
Selforganizology, 3(3): 75-86

raw=input('Input the file name of node-by-attribute data (e.g., raw.txt, raw.xls, etc. The matrix is z=(zij)n*m, where n is the
number of candidate attributes, m is total number of nodes): ','s");

adj=input('Input the file name of adjacency matrix of unweighted or weighted network (e.g., adj.txt, adj.xls, etc. Adjacency

matrix is d=(dij)m*m, where m is the number of nodes in the network. dij=1 for unweighted network and dij=wij for weighted
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network (wij is the weight for the link vi to vj), if vi and vj are adjacent, and dij=0, if vi and vj are not adjacent; i, j=1,2,..., m):

S

fs=input('Input the F threshold value for screening attributes (e.g., 0.1, 0.05): );

choice=input('Input the type of topological property of nodes (1: Degree centrality; 2: Closeness centrality; 3: Betweenness

centrality): ");

raw=load(raw); nw=size(raw,1); m=size(raw,2); n=nw+1;

x=zeros(n,m);
adj=load(adj);

newdata=zeros(nw,m); xb=zeros(1,n); sg=zeros(1,n); ds=zeros(1,n); degr=zeros(1,m);

switch choice

case 1
degr=sum(adj);

case 2
[ss,pat,distances,paths]=Dijkstra(ad));
for i=1:m
degr(i)=1/sum(distances(i,:));
end

case 3

[ss,pat,distances,paths]=Dijkstra(adj);

for i=1:m
degr(i)=pat(i)/ss;
end

end

a=zeros(n);

x=[raw;degr];
iss=";
fori=1:n
c=0;

for j=1:m
c=c+x(ij);
end
xb(i)=c/m;
c=0;

for j=1:m
c=c+(x(i.,j)-xb(i))"2;
end
sg(i)=sart(c);
end

h=sg(n);

for i=1:n-1
for j=i+1l:n
c=0;

for k=1:m
c=c+(x(i,k)-xb(i))*(x(,k)-xb());
end
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a(i.j)=c/(sg(i)*sg(i)); a(i.i=ai.j);
end; end

fori=1:n

xb(i)=i; sg(i)=0; a(i,i)=1;

end

1=0; s=0;

while (n>=1)

if (I==n-1) break; end

ma=0;

fori=1:n

ds(i)=xb(i);

end

for i=1:n-1

if (ds(i)==0) continue; end

if (a(i,i)<1e-05) continue; end
v1=a(i,n)*a(n,i)/a(i,i);

if (v1>ma) ma=v1; k=i; end
end
fl=ma*(m-I-2)/(a(n,n)-ma);
if (f1<=fs) break; end
xb(k)=0; sg(k)=k;

I=1+1;

fori=1:n

for j=1:n

if ((i~=k) & (j~=k)) a(i,j)=a(i,j)-a(i,k)*a(k,j)/a(k,k); end
end; end

for j=1:n

if (j~=Kk) a(k,j)=a(k,j)/a(k,k); a(j,k)=-a(j,k)/a(kk); end
end

a(k,k)=1/a(k,k);
r=sqrt(1-a(n,n));
yn=h*sgrt(a(n,n)/(m-I-1));

if (s==0) s=1; continue; end
lab=0;

while (n>=1)

ma=-1e+18;

fori=1:n

ds(i)=sg(i);

end

for i=1:n-1

if (ds(i)==0) continue; end

if (a(i,i)<1e-05) continue; end
vl=a(i,n)*a(n,i)/a(i,i);

if (v1>ma) ma=v1;k=i; end
end

IAEES

Wwww.iaees.org



80 Selforganizology, 2016, 3(3): 75-86

fl=-ma*(m-I-1)/a(n,n);

if (f1>fs) lab=1; break; end

sg(k)=0; xb(k)=k; I=I-1;

fori=1:n

for j=1:n

if ((i~=k) & (j~=k)) a(i,j)=a(i,j)-a(i,k)*a(k,j)/a(k,k); end
end; end

for j=1:n

if (j~=Kk) a(k,j)=a(k,j)/a(k,k); a(j,k)=-a(j,k)/a(k,k); end
end

a(k,k)=1/a(k,k);

r=sgrt(1-a(n,n)); yn=h*sqrt(a(n,n)/(m-I-1));

end;

if (lab==1) continue; end

end

for i=1:n-1

a(i,1)=sg(i);

end

fori=1:n

c=0;

for j=1:m

c=c+x(i,j);

end

xb(i)=c/m;

c=0;

for j=1:m

c=c+(x(i.))-xb(i))"2;

end

sg(i)=sart(c);

end

h=sg(n);

c=0;

for i=1:n-1

if (a(i,1)==0) continue; end
ds(i)=a(i,n)*sg(n)/sg(i); a(i,2)=ds(i); c=c+ds(i)*xb(i);
end

s=xb(n)-c;

iss=strcat(iss,'Screened attributes: \n');

nm=0;

for i=1:n-1

if (a(i,1)==0) continue; end

if (ds(i)~=0) iss=strcat(iss, Attribute-',num2str(i)); end
if ((ds(i+1)~=0) & (i<n-1)) iss=strcat(iss,',"); end
if (ds(i)~=0)

nm=nm-+1,
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for j=1:m

newdata(nm,j)=x(i,j);

end; end

end

fprintf(\nNew attribute-by-node data\n’)
disp([newdata(1:nm,:)])

iss=strcat(iss,\nStepwise regression equation:\n’);
iss=strcat(iss,'y=",num2str(s));

for i=1:n-1

if (a(i,1)==0) continue; end

if (ds(i)>0) e1=num2str(ds(i)); end

if (ds(i)<0) el=num2str(abs(ds(i))); end

if (ds(i)>0) iss=strcat(iss,'+',e1,'Attribute’,num2str(i)); end
if (ds(i)<0) iss=strcat(iss,-',e1, Attribute’,num2str(i)); end

end

iss=strcat(iss,\nCorrelation coefficient R=",numa2str(r),", ','F value=",num2str(fs),\n");

fprintf(iss)

The functions, Dijkstra.m, foundCircuit.m, which are used to calculate the shortest path and corresponding
distance between two nodes, and to calculate the fundamental circuits in the network respectively (Zhang,

2012a), are as the following

function [ss,pat,distances,paths]=Dijkstra(d)

% d: weighted adjacency matrix; ss: total number of paths; pat: number of paths passing through each node; distances: matrix of

distances between different nodes; paths: string of paths and distances between any of two nodes

v=size(d,1);

p=zeros(1,v); w=zeros(1,v); a=zeros(1,v); b=zeros(1,v);
pat=zeros(1,v);

distances=zeros(v);

fori=1:v

for j=1:v

if ((d(i,j)==0) & (i~=j)) d(i,j)=inf; end
end; end

paths=";

su=0;

for j=1:v-1

for k=j+1:v

fori=1l:v

p(i)=0; w(i)=0;

a(i)=inf;

end

a(j)=0; w(j)=1; n=j; h=0;

while (v>0)

ma=inf;

for i=1:v

IAEES
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if (w(i)==1) continue; end
iv=d(n,i)+a(n);

if (iv<a(i)) a(i)=iv; b(i)=n; end
if (a(i)>ma) continue; end
ma=a(i); h=i;

end

w(h)=1;

if (h==k) break; end

n=h;

end

sd=a(k); p(1)=k; c=k;

for i=2:v

if (c==j) break; end
p()=b(c); c=b(c);

end

paths=strcat(paths,'Shortest path from ‘,num2str(j)," to ',num2str(k),"\n’);

fori=v:-1:1
if ((p(1)~=0) & (sd~=inf))

if (i>1) paths=strcat(paths,numz2str(p(i)),'->"); end

if (i<=1) paths=strcat(paths,numz2str(p(i)),"\n"); end

end; end
for i=v:-1:1
for h=1:v

if (p(i)==h) pat(h)=pat(h)+1; break; end

end; end

if (sd~=inf) paths=strcat(paths,'Distance=",num2str(sd),\n"); distances(j,k)=sd; distances(k,j)=sd; end

if (sd==inf) paths=strcat(paths,'No path',\n"); su=su+1; end

end; end
ss=v*(v-1)/2-su;

function [num,n,circuits]=foundCircuit(d)

% d: weighted adjacency matrix; num: total number of fundamental circuits; n: number of fundamental circuits containing each

node; circuits: string of all circuits

v=size(d,1);

I=zeros(1,v); vp=zeros(1,v); ts=zeros(1,v); circuit=zeros(1,v*(v-1)/2);

n=zeros(1,v);
num=0;

for i=1:v
I(i)=-1;

end

circuits=",
t=1,

while (v>0)
its=1;

ts(1)=t; I(t)=0;

IAEES
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while (v>0)

if (its==0) break; end
r=ts(its); Im=I(r)+1;
for w=1:v

if (d(r,w)<=0) continue; end
if ((d(r,w)>0) & ((I(w)+1)==0))
ts(its)=w;

its=its+1;

vp(w)=r; I(w)=Im;
d(r,w)=0; d(w,r)=0;
continue; end
num=num+1; a=vp(w);
m=1;

circuit(1)=r; j=r;

while (v>0)

J=vp();

m=m-+1,

circuit(m)=j;

if (j==a) break; end
end

m=m+1;

circuit(m)=w;

circuits=strcat(circuits,'Number of fundamental circuit: ',num2str(num),\n’);

circuits=strcat(circuits,'Fundamental circuit: *);

for j=1:m

circuits=strcat(circuits,num2str(circuit(j)),->");

end

circuits=strcat(circuits,num2str(circuit(1)),\n");

for i=1:v

for j=1:m

if (circuit(j)==i) n(i)=n(i)+1; break; end

end; end

d(r,w)=0; d(w,r)=0;
end

its=its-1;

end

la=0;

for t=t:v

if (I(t)==-1) la=1; break; end
end

if (la==1) continue; end
break;

end
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3 Application Example

Data of 17 common HLA-DQBL alleles (candidate attributes) for the world’s 12 human races and populations
(nodes) (17x12; Table 1) are from Zhang and Qi (2014) and Zhang (2015c, supplementary material; here the
transposition of HLA_DQBL1.txt). In addition, an adjacency matrix (12x12; HLA DQB1_adj.txt; Zhang,
2015c, supplementary material), derived from linear correlation analysis, is given.

Table 1 The world’s 12 human races and populations (nodes) and 17 common HLA-DQB1 alleles
(candidate attributes)

Allele ID Alleles 1 2 3 4 5 6 7 8 9 10 11 12

1 DQB1*0201 102 325 238 186 87 135 143 140 92 106 46 60
2 DQB1*0301 71 140 214 169 230 225 159 191 146 245 199 130
3 DQB1*0302 163 114 71 59 82 49 77 67 8 53 38 40
4 DQB1*0303 153 44 71 119 184 163 170 174 62 202 86 170
5 DQB1*0401 10 44 12 51 0 58 50 45 15 64 15 0
6 DQB1*0402 41 18 71 25 0 0 1 0 0 0 0 0
7 DQB1*0501 123 53 48 25 20 37 77 45 15 43 38 80
8 DQB1*0502 51 0 48 68 71 106 28 11 92 43 331 380
9 DQB1*05031 71 44 48 76 36 56 44 6 0 74 46 90
11 DQB1*05032 10 0 0 0 0 0 0 0 31 0 0 0
12 DQB1*0504 0 0 24 25 0 0 0 0 46 0 0 0
13 DQB1*0601 10 44 36 102 158 88 99 129 146 8 136 30
14 DQB1*0602 153 105 36 42 36 47 121 124 331 64 23

15 DQB1*0603 10 35 60 25 5 0 17 34 8 0 0

16 DQB1*0604 10 18 24 25 5 12 0 28 0 21 0

17 DQB1*06051 20 18 0 0 20 0 0 0 10
18 DQB1*null 0 0 0 0 0 25 7 42 10

Table 2 Screened node attributes when different node centralities (dependent variables) and statistic
significance levels are used. ‘+’ denotes positive influence and ‘- denotes negative influence.

Attributes Node centrality Closeness centrality Betweenness centrality Circuit centrality
F=0.1 F=0.05 F=0.1 F=0.05 F=0.1 F=0.05 F=0.1 F=0.05
1 DQB1*0201 + + + +
2 DQB1*0301 - - - - - -
3 DQB1*0302 - -
4 DQB1*0303 + + + + + + + +
5 DQB1*0401 + +
6 DQB1*0402 - - + +
7 DQB1*0501 - -
8 DQB1*0502 - - - -
9 DQB1*05031 - -
10 DQB1*05032 - - + + - - - -
11 DQB1*0504 + + + + + +
12 DQB1*0601 + + + + + +
13 DQB1*0602 - - + + + +
14 DQB1*0603 + + + + + +
15 DQB1*0604 - - - - - - - -
16 DQB1*06051 - -
17 DQB1*null + + + +
R 0.9999 0.9999 0.9999 0.9999 1 1 0.9998  0.9998
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In Table 1, nodes 1 to 12 represent Tibetan, Uighur, Kazak, Xingjiang Han, Taiwanese, Hong Kong,
Northern Han, Shanghai Han, Hunan Han, Manchu, Buyi, and Dai (Geng et al., 1995; Chang and Hawkins,
1997; Mizuki et al., 1997, 1998, and others).

Using different node centralities and statistic significances, screening results of node attributes are listed
in Table 2. As an example, the stepwise linear regression equation for node centrality and F=0.1 is

y=-0.29311+0.00899xAttribute1-0.00963x Attribute3+0.03587x Attribute4-0.01650xAttribute8-0.25115
xAttribute10+0.10231xAttribute11+0.0126 1xAttribute12+0.05268xAttribute14-0.08376xAttribute15+0.093
26xAttributel7

R=0.9999

4 Discussion

In present study, a single topological property, i.e., a type of node centrality is used as the dependent variable
of stepwise regression, of which degree centrality is particularly important. Degree centrality is directly
correlated to network structure, link prediction, and network evolution (Zhang, 2012a, 2015a, 2015b; Zhang
and Li, 2015a, 2015b). To find node attributes that significantly determine the comprehensive topological
structure of the network, multiple properties, e.g., node centralities, connectivity (Zhang, 2012a), connectance
(2011, 2012a), aggregation index (Zhang and Zhan, 2011), etc., should be jointly used. In this case, the
stepwise regression of multiple properties vs. multiple node attributes (Zhang and Fang, 1982) is suggested for
use.
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