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Abstract 

In present article, we presented the Matlab algorithm of Ou-Yang’s model (Ou-Yang et al., 2017). It can be 

used to explore the shared clustering structure in PPI (protein-protein interaction) and DDI (domain-domain 

interaction) networks. A final matrix H can be achieved using the algorithm. Protein i belongs to complex k if 

Hik=1, otherwise Hik=0, i=1, 2, …, N1; k=1, 2, …, K, where N1 is the number of proteins in PPI network, and 

K is the number of complexes (clusters). 
 
Keywords Matlab algorithm; Ou-Yang’s model; protein-protein interactions; protein complexes; 

heterogeneous networks. 

 

 

 

 

 

 

 

 

1 Introduction 

Biological systems at different levels are self-organizing systems (Zhang, 2013a, b, 2015, 2016, 2018). The 

organisms are survived by numerous protein-protein interactions (PPIs) in the cells. Proteins usually generate 

protein complexes to function (Huang et al., 2013; Zhao et al., 2014; Ou-Yang et al., 2017). Therefore, 

identification of protein complexes is a necessity. So far, numerous methods have been proposed in this aspect 

(Enright et al., 2002; Bader and Hogue, 2003; King et al., 2004; Adamcsek et al., 2006; Li et al., 2010; Wang 

et al., 2010; Nepusz et al., 2012; Ji et al, 2014).  

PPIs generally covers the physical interaction between specific protein domains (Wuchty, 2006. Ou-Yang 

et al., 2017). Since most proteins are multi-domain proteins, it is possible to develop algorithms that allow 

exploration of mutiple between-node relationships in different networks (Greene et al., 2008; Zhang et al., 

2012; Ou-Yang et al., 2013).   

Based on previous studies, Ou-Yang et al. (2017) proposed a multi-network clustering (MNC) model to 

explore the shared clustering structure in PPI and DDI networks, in order to improve the accuracy of protein 

complex detection. Correspondingly, we here present the Matlab algorithm of Ou-Yang’s model (Ou-Yang et 

al., 2017). 
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2 Methods  

2.1 Ou-Yang’s model 

In Ou-Yang’s model, the networks are assumed to be collected from different but related fields, i.e., PPI 

network and DDI network. And it has a many-to-many (i.e., a protein may contain multiple domains) 

cross-field instance relationship. Given a PPI network and a DDI network, a model is used to describe the 

generation processes of two networks. Based on the domain-protein associations, the generation of PPI and 

DDI networks is assumed to be dominated by a shared clustering structure that describes the degree of proteins 

belonging to complexes. The protein complex detection finally becomes a parameter estimation problem 

(Ou-Yang et al., 2017).  

According to Ou-Yang et al. (2017), given a PPI network G1 with N1 proteins, and a DDI network G2 

with N2 domains, two nonnegative score matrices, A(1)
N1×N1 and A(2)

N2×N2, are the affinity/adjacency matrix of 

G1 and G2 respectively. The relationships between nodes in G1 and nodes in G2 may be many-to-many. The 

domain-protein associations are described by the domain-protein association matrix FN2×N1, where Fxi = 1 if 

protein i in G1 contains domain x in G2, otherwise Fxi = 0. The goal is to jointly find clustering structures in 

PPI network G1 and DDI network G2, and derive H(m)
ik (the weight of node i in the predicted k-th cluster of 

m-th network) from each network A(m). A higher value of H(m)
ik means that node i more likely belongs to 

cluster k and vice versa. Here, H(1)=H, H(2)=FH(1)=FH, HRN1×K, where H is the protein-complex membership 

matrix. 

   Solve the following optimization problem: 

 

minH,λ −
N1

i,j=1A
(1)

ij log(1−exp(−K
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+N1
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                                         (1)  
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in which  

 

λk←(2b+N1
i=1H

2
ik )/(N1+2a +2)                           (2)  

k=1, 2, …, K 

 

and  

 

Hik←Hik/2+Hik/2*(N1
j=1A

(1)
ijHjk/(1−exp(−HH’)ij)+

N2
x,y=1(A
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j=1HjkFyj+Hik /(2λk))              (3) 

i=1, 2, …, N1; k=1, 2, …, K 

 

are alternatively changed and are used to minimize eq. (1) until the permitted iterative error of objective 

function is achieved. Initial H (binary matrix) should be given before computation. In the initial H, Hik=1, if 
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protein i is assigned to complex (cluster) k, and Hik=0 otherwise, where i=1, 2, …, N1; k=1, 2, …, K. Initial H 

is then positively perturbed with small positive and random values 

 

H←H+rand(N1,K)/10 

 

   For the final H, given a threshold τ. Protein i is assigned to complex k if Hik ≥τ, i.e., let Hik=1, otherwise 

Hik=0 if Hik <τ.  

2.2 Matlab algorithm 

The following is the full Matlab algorithm, PPI_DDI, for Ou-Yang’s model, using in the Matlab environment. 

 

a=input('Input parameter a (e.g., 2) = '); 

b=input('Input parameter b (e.g., 0.25N1; e.g., for N1=100, b=250) = '); 

sim=input('Input maximum number of iterations (e.g., 1000) = '); 

err=input('Input permitted absolute error (e.g., 0.001) = '); 

tao=input('Input threshold tao (Suggested: 0.3) = '); 

pert=input('Input strength of random perturbation to H (Suggested: 0.1) = '); 

strA1=input('Input the file name of A1 matrix (A1=(a1ij)N1N1): ','s'); 

strA2=input('Input the file name of A2 matrix (A2=(a2ij)N2N2): ','s'); 

strF=input('Input the file name of F matrix (F=(fij)N2N1): ','s'); 

strH=input('Input the file name of initial H matrix (H=(hij)N1K, where hij=1 if protein i is assigned to complex j, or else 

hij=0):','s'); 

H=xlsread(strH); 

K=size(H,2); 

A1=xlsread(strA1); A2=xlsread(strA2); F=xlsread(strF); 

N1=size(A1,1); 

N2=size(A2,1); 

H0=H; 

Hopt=H; 

H=H+rand(N1,K)*pert;  %Positive random perturbation to H 

objLast=1e+10; 

sm=0; 

while (sm<=sim) 

while (K>0) 

lamda=lamda_Update(H,a,b); 

%H>=0 

if (sum(sum(H<0))>0)  

H=H_Update(H,lamda,A1,A2,F); 

else break; 

end 

end     

obj=objFun(H,lamda,A1,A2,F,a,b); 

if (obj<objLast) 

Hopt=H; 

end 

if (abs(objLast-obj)<err) break; end 
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H=H_Update(H,lamda,A1,A2,F); 

objLast=obj; 

sm=sm+1; 

end 

Hopt(Hopt>=tao)=1; 

Hopt(Hopt<tao)=0; 

fprintf(['\nThe original matrix H\n']) 

H0 

fprintf(['\nThe optimal matrix H\n']) 

Hopt 

for k=1:K 

fprintf(['\n\nThe proteins belonging to complex ' num2str(k) ' :\n']) 

for i=1:N1 

if (Hopt(i,k)==1)  

fprintf([num2str(i) ',']) 

end 

end 

end 

 

function objFun=objFun(H,lamda,A1,A2,F,a,b) 

N1=size(A1,1); 

N2=size(A2,1); 

K=size(H,2); 

term1=0; 

term2=0; 

for i=1:N1; 

for j=1:N1; 

s=0; 

for k=1:K; 

s=s+H(i,k)*H(j,k); 

end; 

term1=term1+A1(i,j)*log(1-exp(-s)); 

term2=term2+(1-A1(i,j))*s; 

end 

end 

EX=F*H*H'*F'; 

term3=0; 

term4=0; 

for x=1:N2; 

for y=1:N2; 

term3=term3+A2(x,y)*log(1-exp(-EX(x,y))); 

term4=term4+(1-A2(x,y))*EX(x,y); 

end; 

end 

term5=0; 
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for i=1:N1; 

for k=1:K; 

term5=term5+H(i,k)^2/(2*lamda(k)); 

end 

end 

term6=0; 

term7=0; 

for k=1:K; 

term6=term6+log(lamda(k)); 

term7=term7+b/lamda(k); 

end 

term8=term6*(a+1); 

term6=term6*N1/2; 

objFun=-term1+term2-term3+term4+term5+term6+term7+term8; 

 

function lamda=lamda_Update(H,a,b) 

N1=size(H,1); 

K=size(H,2); 

for k=1:K; 

lamda(k)=(2*b+sum(H(:,k).^2))/(N1+2*a+2); 

end 

 

function H=H_Update(H,lamda,A1,A2,F) 

N1=size(A1,1); 

N2=size(A2,1); 

K=size(H,2); 

EX1=-H*H'; 

EX2=-F*H*H'*F'; 

for i=1:N1; 

for k=1:K; 

sn1=0; 

for j=1:N1; 

sn1=sn1+A1(i,j)*H(j,k)/(1-exp(EX1(i,j))); 

end 

ss=0; 

sn2=0; 

for x=1:N2; 

for y=1:N2;   

s2=0; 

for j=1:N1; 

s2=s2+H(j,k)*F(y,j); 

end 

ss=ss+F(x,i)*s2; 

s1=A2(x,y)*F(x,i)*s2; 

sn2=sn2+s1/(1-exp(EX2(x,y))); 
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end 

end 

deno=sum(H(:,k))+ss+H(i,k)/(2*lamda(k)); 

no=sn1+sn2; 

H(i,k)=H(i,k)/2+H(i,k)/2*no/deno; 

end 

end 

 

   The executable GUI software (see supplementary material) of the algorithm above is partly indicated in 

Fig. 1. 

 

 

Fig. 1 The executable GUI software of the algorithm. 
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