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Abstract  

Little is known about the structures and characteristics of the networks behind galaxy clusters. Considering 

that the essential interaction between the elements of a cluster is the gravitational attraction, the study has 

modeled the Local Group, a local galaxy cluster of which the Milky Way is a member, as a weighted network 

according to gravitational attraction. After the galaxies’ unknown masses have been calculated from their 

apparent and absolute magnitudes, the gravitational attraction matrix, being the adjacency matrix of the 

network, would be formed from the matrix of their positions relative to each other. Various centrality 

measurements known as fundamental network metrics were thus performed to determine if the massive 

galaxies of the cluster have high centrality values. In the proposed weighted network model, direct and indirect 

correlations have been observed between centrality values and masses of the galaxies. 
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1 Introduction 

Examination of the large-scale structure of the universe has been thought with a network model for a while. As 

large-scale networks are required to be modeled in such investigations, the study of the intergalactic space has 

been one of the models where galaxies represent nodes. Some network analyses, both from simulation and 

observational data, investigate the topological properties of the connected galaxies on a web-like basis called 

the cosmic web (Coutinho et al., 2016; Forero-Romero et al., 2009; Aragon-Calvo et al., 2010; Bond et al., 

1996; Shandarin et al., 2010), which is a comprehensive concept to include the holding of galaxies together by 

gravity, the gas stretched between them and distribution of the dark matter. A network and its edges formed 

between galaxies could be modeled by merely gravitational interactions. Thus, it would be the right choice to 

study the local clusters of galaxies where the Hubble law could not be observed (Freedman and Feng, 1999). 

Keeping galaxies together in a local cluster requires them not to move away from each other by the expansion 
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of the universe. This makes local galactic clusters suitable to create a network model which galaxies have been 

held by gravity and do not move at relativistic speeds within the cluster. Since the Modified Newtonian 

Dynamics (MOND) does not adequately account for the observed characteristics of these clusters and if the 

galaxies inside a cluster are considered to be point-like objects, Newton’s law of universal gravitation would, 

therefore, produce weights of edges between galaxies. Einstein’s equations are more critical in relativistic 

speeds. Moreover, size of local clusters or even that of superclusters is much smaller than the possible radius 

of the curvature of the universe where the curved geometry would not be taken into account. For several such 

reasons as the above, local galaxy clusters and their weighted network models could be studied sufficiently 

within the scope of the Newtonian gravity (Bergshoeff et al., 2015; Verlinde, 2011; Gherghetta et al., 2000). 

   Our galaxy, the Milky Way, moves alongside a local galaxy cluster known as the Local Group, which 

spans a volume more than 3 Mpc in diameter. Over fifty galaxies constitute this cluster with two massive spiral 

galaxies, one medium spiral, and many elliptical, irregular, and spherical dwarf galaxies. Two massive spiral 

galaxies of the cluster– Andromeda (M31) and the Milky Way - are close to each other by mass, except that 

Andromeda is larger (McMillan, 2011; Kafle et al., 2018). They together contain more than half of the entire 

mass of the Local Group. Many of the dwarf galaxies of this cluster are satellite ones orbiting around the 

Milky Way and Andromeda. The Milky Way is the one with more satellites likely to be found as time goes by 

(Newton et al., 2018). The present study has mentioned 54 galaxies of the Local Group, but the count is still 

increasing in that there could be some tiny galaxies difficult for us to detect blocking gas and dust having 

originated from our galaxy through the view. It requires one significant ingredient, the total mass of each 

galaxy, which would determine the weight of each edge of the network to express the gravitational interaction 

between galaxies of the Local Group as a weighted network. 

   The basic geometric structures of galaxies encountered in the universe are elliptical, spiral and irregular 

ones surrounded by their haloes. They all include dark matter as well as baryonic matter such as stellar halo 

and galactic corona (Rix et al., 1997; Navarro and Steinmetz, 2000; Cote et al., 2000). Thus, to estimate the 

total mass of a galaxy, the sum of the mass of everything inside the halo volume might be approximated. The 

study includes the total mass of some galaxies of the Local Group, obtained from the literature. Galaxy masses 

not included in the literature are estimated from their apparent magnitudes and distances to us. This method is 

explained in detail in the following section, Masses of galaxies. Weighted Network Model section embraces 

the weighted network model of the Local Group. Results and Discussion section contains the centrality 

measurements of each galaxy and final section is the conclusion. 

 

2 Material and Methods 

2.1 Masses of galaxies 

In the literature, the total masses of most galaxies in Local Group are estimated by adding their stellar mass, 

stellar corona mass, galactic corona mass, and dark matter masses (Table 1). For galaxies whose masses are 

unknown, first, absolute magnitudes have been obtained based on their measured apparent magnitudes and 

distances from us, as follows: 

 

ݏܾܽܯ ൌ ݌݌ܽܯ ൅ 5 െ 5 logሺܦሻ (1)

 

where ܯ௔௕௦ and ܯ௔௣௣ are absolute and apparent magnitudes respectively, and ܦ is the distance to Earth 

which has been assumed as the distance of related galaxy to the Milky Way. Then the absolute magnitude 

could be converted to solar luminosity which is given as follows: 
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݈ܽ݃ܮ
ۨܮ

ൌ 10െ0.4ሺݏܾܽܯെݏܾܽܯ,ۨሻ 
(2)

 

where ܮ௚௔௟ ⁄ۨܮ  is the ratio of the galaxy luminosity to the solar luminosity and ܯ௔௕௦,ۨ is the absolute 

magnitude of the sun, which is 4.83. Next, one must assume that mass-to-light ratio (M/L) depends on the 

galaxy type, age, metallicity, and also star-forming history (Ricotti and Gnedin, 2005).With the estimation of 

the mass-to-light ratio, the total mass of a galaxy could be calculated approximately in terms of solar mass 

below: 

 
݈ܽ݃ܯ

ۨܯ
ൌ
݈ܽ݃ܮ
ۨܮ

ൈ
ܯ

ܮ
 

(3)

 

Of 54 galaxies, those whose masses are unknown are Andromeda VI, Aquarius Dwarf, Canes Venatici II, Leo 

IV, Andromeda V, Andromeda XI, Andromeda XII, Andromeda XIII, Tucana Dwarf, Ursa Major II, and 

Coma Berenices Dwarf. Alongside with dark matter containing dwarf irregular galaxies (dIrr), especially 

dwarf spheroidal galaxies (dSph) have extended distributions of dark matter around their visible stars and dust, 

which increase their mass-to-light ratio. Since all these dSph and dIrr galaxies involvea significant amount of 

dark matter (Read et al., 2016; Penarrubia et al., 2008; Strigari et al., 2008; Randall and Scholtz, 2015; 

Chapman et al., 2005), the M/L ratio has been approximated to 100 for total masses of all. Thus, their total 

masses have been estimated considering their apparent magnitudes and distances (McConnachie et al., 2005; 

Willman et al., 2005; Zucker et al., 2004; Zucker et al., 2007; Zucker et al., 2006a; Zucker et al., 2006b; Irwin 

et al., 2007; Mateo, 1998; Avila-Vergara et al., 2016; Belokurov et al., 2007; Belokurov et al., 2006) to the 

Milky Way. Table 1 shows the approximate masses of galaxies in the Local Group and whether they are 

satellites of any galaxies. Galaxies have been sorted from large to small according to their diameters. The last 

column exhibits where the total masses have been obtained from. 

2.2 Weighted network model 

While constructing the gravity-based weighted network model of the Local Group, the priority is locations of 

all galaxies. Their distances to the Milky Way, their galactic latitudes and longitudes (McConnachie et al., 

2005; Willman et al., 2005; Zucker et al., 2004; Zucker et al., 2007; Zucker et al., 2006a; Zucker et al., 2006b; 

Irwin et al., 2007; Mateo, 1998; Martin et al., 2006; Belokurov et al., 2007; Belokurov et al., 2006) of every 

Local Group member could be transformed into cartesian coordinates as follows: 

 

݅ݔ
1 ൌ ݅ܦ cos ቀܾ݅

°
ߨ

180
ቁ cos ቀ݈݅

°
ߨ

180
ቁ 

(4)

 

݅ݔ
2 ൌ ݅ܦ cos ቀܾ݅
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ߨ
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ߨ
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(5)

 

݅ݔ
3 ൌ ݅ܦ sin ቀ݈݅

°
ߨ

180
ቁ 

(6)

 

where ݔ௜
ଵ, ݔ௜

ଶ and ݔ௜
ଷ are three dimensions of a particular galactic position to the origin (location of the 

Milky Way), ܦ௜ the distance, ܾ௜
° and ݈௜

° latitude and longitude of the ݅th galaxy, respectively. According to 
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the calculations, positions of galaxies of the Local Group have been plotted in Fig. 1. 

   There are two points needed to be highlighted regarding the map in Fig. 1. The first is that Hubble Law 

does not apply to the local clusters of galaxies, but entire Local Group galaxies are moving with respect to 

each other under gravitational attraction (Irwin, 1999). With the assumption that galaxies are moving slowly 

concerning each other, the study has accepted that they are as if they remained stable in figure 1. From that 

map, likely to assume that distances between galaxies remain stable, it follows that a matrix of gravitational 

attraction could be generated. Since this matrix would be the adjacency matrix of the weighted network model 

of the Local Group, every element should be determined by the force of attraction between ݅th and ݆th 

galaxies. In order to obtain the approximate numerical value of the attraction between galaxies, หࡲ௝௜ห ൌ

௜݉ܩ ௝݉ ห࢘௝ െ ௜ห࢘
ଶ

⁄  could be written, where ࢘௜ and ࢘௝ are displacement vectors from the origin. However, 

the second is that comparison of the galaxies’ sizes and distances between them shows galaxies’ sizes to tend 

to be so minuscule that they could be regarded as point objects. 

 

 
Table 1 Masses of all spiral large, elliptical, irregular and spherical dwarf galaxies of the Local Group. Equations (1), (2) and (3) 
are used for those whose masses are calculated. 

Observed diameter (ly) Name Approximate mass Satellite of Reference 

૚. ૝ ൈ ૚૙૞ Andromeda (M31) ~1.2 ൈ 10ଵଶۨܯ - (Kafle et al., 2018) 

ૢ ൈ ૚૙૝ Milky Way ~1.2 ൈ 10ଵଶۨܯ - (McMillan, 2011) 

૞. ૞ ൈ ૚૙૝ Triangulum (M33) ~5 ൈ 10ଵ଴ۨܯ - (Corbelli, 2003) 

૛. ૞ ൈ ૚૙૝ NGC 3109 ~2.3 ൈ 10ଽۨܯ - (van den Bergh, 2000) 

૛. ૞ ൈ ૚૙૝ Large Magellanic 

Cloud 

~4.8 ൈ 10ଵ଴ۨܯ Milky Way (Belokurov et al., 2017) 

૛. ૙ ൈ ૚૙૝ Sagittarius Dwarf ~1.2 ൈ 10ଽۨܯ Milky Way (Ibata and Lewis, 1998) 

૚. ૞ ൈ ૚૙૝ Small Magellanic 

Cloud 

~6.5 ൈ 10ଽۨܯ Milky Way (Bekki and Stanimirovic, 

2009) 

૚. ૞ ൈ ૚૙૝ NGC 205 (M110) ~7.4 ൈ  Andromeda (Mateo, 1998) ۨܯ10଼

૚ ൈ ૚૙૝ IC 1613 ~7.9 ൈ  (Mateo, 1998) - ۨܯ10଼

૚ ൈ ૚૙૝ NGC 147 ~1.1 ൈ  Andromeda (van den Bergh, 1998) ۨܯ10଼

૚ ൈ ૚૙૝ WLM ~1.5 ൈ  ,Bekki and Stanimirovic) - ۨܯ10଼

2009) 

૚ ൈ ૚૙૝ Sextans A ~4 ൈ  ,Bekki and Stanimirovic) - ۨܯ10଼

2009) 

ૡ ൈ ૚૙૜ NGC 6822 ~1.6 ൈ 10ଽۨܯ - (Mateo, 1998) 

ૡ ൈ ૚૙૜ NGC 185 ~1.3 ൈ  Andromeda (Mateo, 1998) ۨܯ10଼

ૡ ൈ ૚૙૜ M32 ~2.1 ൈ 10ଽۨܯ Andromeda (Mateo, 1998) 

ૡ ൈ ૚૙૜ IC 10 ~1.6 ൈ 10ଽۨܯ - (Mateo, 1998) 

ૡ ൈ ૚૙૜ Sextans B ~8.9 ൈ  (Mateo, 1998) - ۨܯ10଼

૟ ൈ ૚૙૜ Canes Venatici I ~2.7 ൈ 10଻ۨܯ - (Simon andGeha, 2007) 

૟ ൈ ૚૙૜ Pegasus Dwarf ~5.8 ൈ 10଻ۨܯ Andromeda (Mateo, 1998) 

૞ ൈ ૚૙૜ Fornax Dwarf ~6.8 ൈ 10଻ۨܯ Milky Way (Mateo, 1998) 

૞ ൈ ૚૙૜ Andromeda X ~5.5 ൈ 10଺ۨܯ Andromeda (Kalirai et al., 2010) 

૝ ൈ ૚૙૜ Hercules Dwarf ~3.7 ൈ 10଺ۨܯ Milky Way (Aden et al., 2009) 

૝ ൈ ૚૙૜ Leo A ~1.1 ൈ 10଻ۨܯ - (Mateo, 1998) 
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૝ ൈ ૚૙૜ Andromeda IX ~5 ൈ 10଺ۨܯ Andromeda (Harbeck, 2005) 

૜ ൈ ૚૙૜ Sculptor Dwarf ~6.4 ൈ 10଺ۨܯ Milky Way (Mateo, 1998) 

૜ ൈ ૚૙૜ Sextans Dwarf ~1.9 ൈ 10଻ۨܯ Milky Way (Mateo, 1998) 

૜ ൈ ૚૙૜ Ursa Major I ~1.2 ൈ 10଺ۨܯ Milky Way (Willman, 2005) 

૜ ൈ ૚૙૜ Leo II ~9.7 ൈ 10଺ۨܯ Milky Way (Mateo, 1998) 

૜ ൈ ૚૙૜ Leo I ~2.2 ൈ 10଻ۨܯ Milky Way (Mateo, 1998) 

૜ ൈ ૚૙૜ Andromeda II ~7 ൈ 10଻ۨܯ Andromeda (Kalirai et al., 2010) 

૜ ൈ ૚૙૜ Andromeda III ~8.6 ൈ 10଺ۨܯ Andromeda (Kalirai et al., 2010) 

૜ ൈ ૚૙૜ Cetus Dwarf ~7 ൈ 10଺ۨܯ - (Avila-Vergara et al., 2016)

૜ ൈ ૚૙૜ Andromeda VI ~1.2 ൈ  Andromeda Calculated ۨܯ10଼

૜ ൈ ૚૙૜ Aquarius Dwarf ~2.1 ൈ  Calculated - ۨܯ10଼

૜ ൈ ૚૙૜ SagDIG ~9.6 ൈ 10଺ۨܯ - (Mateo, 1998) 

૜ ൈ ૚૙૜ Antlia Dwarf ~1.2 ൈ 10଻ۨܯ NGC 3109 (Mateo, 1998) 

૛ ൈ ૚૙૜ Boötes Dwarf ~1.8 ൈ 10଻ۨܯ Milky Way Calculated 

૛ ൈ ૚૙૜ Ursa Minor Dwarf ~2.3 ൈ 10଻ۨܯ Milky Way (Mateo, 1998) 

૛ ൈ ૚૙૜ Draco Dwarf ~2.2 ൈ 10଻ۨܯ Milky Way (Mateo, 1998) 

૛ ൈ ૚૙૜ Carina Dwarf ~1.3 ൈ 10଻ۨܯ Milky Way (Mateo, 1998) 

૛ ൈ ૚૙૜ Canes Venatici II ~1.8 ൈ 10଺ۨܯ - Calculated 

૛ ൈ ૚૙૜ Leo IV ~9.5 ൈ 10ହۨܯ Milky Way Calculated 

૛ ൈ ૚૙૜ Leo T ~7 ൈ 10଺ۨܯ Milky Way (Ricotti, 2008) 

૛ ൈ ૚૙૜ Phoenix Dwarf ~3.3 ൈ 10଻ۨܯ - (Mateo, 1998) 

૛ ൈ ૚૙૜ Andromeda VII ~5.7 ൈ 10଻ۨܯ Andromeda (Kalirai et al., 2010) 

૛ ൈ ૚૙૜ Andromeda I ~8.7 ൈ 10଻ۨܯ Andromeda (Kalirai et al., 2010) 

૛ ൈ ૚૙૜ LGS 3 (Pisces 

Dwarf) 

~1.3 ൈ 10଻ۨܯ Triangulum (Mateo, 1998) 

૛ ൈ ૚૙૜ Andromeda V ~4 ൈ 10଻ۨܯ Andromeda Calculated 

૛ ൈ ૚૙૜ Andromeda XI ~7 ൈ 10଺ۨܯ Andromeda Calculated 

૛ ൈ ૚૙૜ Andromeda XII ~3.1 ൈ 10଺ۨܯ Andromeda Calculated 

૛ ൈ ૚૙૜ Andromeda XIII ~4.9 ൈ 10଺ۨܯ Andromeda Calculated 

૛ ൈ ૚૙૜ Tucana Dwarf ~4.3 ൈ 10଻ۨܯ - Calculated 

૚ ൈ ૚૙૜ Ursa Major II ~4.6 ൈ 10ହۨܯ Milky Way Calculated 

૚ ൈ ૚૙૜ Coma Berenices 

Dwarf 

~2.6 ൈ 10଺ۨܯ Milky Way Calculated 
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nodes. Betweenness centrality is given by 

 

ܤܥ
ሺ݅ሻݓ ൌ

݆݃݇
ݓ ሺ݅ሻ

݆݃݇
ݓ

 

(9)

 

where ݃௝௞
௪  is the sum of the weights of the paths between ݆ and ݇, and ݃௝௞

௪ ሺ݅ሻ is the sum of the weights of 

the paths involving node ݅ (Opsahl et al., 2010). Considering this all, it is clear that the galaxies with high 

centrality values must be massive and close to the cluster center. The Local Group’s centrality scores are given 

in Table 2. 

 

 

Table 2 Scores of the weighted degree, closeness and betweenness in each galaxy of the Local Group. 

Galaxy Centrality Measures 

Degree Closeness Betweenness 

Andromeda (M31) 3.622 ൈ 10ସଶ 8.518 ൈ 10ଷହ 798 

Milky Way 8.075 ൈ 10ସଶ 1.115 ൈ 10ଷ଺ 1013 

Triangulum (M33) 8.700 ൈ 10ସଵ 8.517 ൈ 10ଷହ 52 

NGC 3109 4.293 ൈ 10ଷ଼ 4.816 ൈ 10ଷଷ 52 

Large Magellanic Cloud 5.599 ൈ 10ସଶ 1.115 ൈ 10ଷ଺ 0 

Sagittarius Dwarf 1.102 ൈ 10ସଶ 1.115 ൈ 10ଷ଺ 0 

Small Magellanic Cloud 7.446 ൈ 10ସଵ 1.115 ൈ 10ଷ଺ 0 

NGC 205 (M110) 1.316 ൈ 10ସଵ 8.515 ൈ 10ଷହ 0 

IC 1613 3.387 ൈ 10ଷଽ 8.242 ൈ 10ଷହ 0 

NGC 147 2.087 ൈ 10ସ଴ 8.500 ൈ 10ଷହ 0 

WLM 2.806 ൈ 10ଷ଼ 6.207 ൈ 10ଷହ 0 

Sextans A 8.232 ൈ 10ଷ଻ 4.803 ൈ 10ଷହ 0 

NGC 6822 4.180 ൈ 10ଷଽ 1.074 ൈ 10ଷ଺ 0 

NGC 185 7.864 ൈ 10ଷ଻ 5.449 ൈ 10ଷହ 0 

M32 1.868 ൈ 10ସଶ 8.517 ൈ 10ଷହ 0 

IC 10 6.641 ൈ 10ସ଴ 8.241 ൈ 10ଷହ 0 

Sextans B 2.140 ൈ 10ଷ଼ 5.217 ൈ 10ଷହ 0 

Canes Venatici I 2.902 ൈ 10ଷ଼ 9.293 ൈ 10ଷହ 0 

Pegasus Dwarf 1.748 ൈ 10ଷ଼ 6.796 ൈ 10ଷହ 0 

Fornax Dwarf 2.039 ൈ 10ଷଽ 1.084 ൈ 10ଷ଺ 0 

Andromeda X 1.580 ൈ 10ଷ଼ 6.653 ൈ 10ଷହ 0 

Hercules Dwarf 1.081 ൈ 10ଷ଼ 7.257 ൈ 10ଷହ 0 

Leo A 2.526 ൈ 10ଷ଻ 2.410 ൈ 10ଷଷ 0 

Andromeda IX 1.650 ൈ 10ଷଽ 8.295 ൈ 10ଷହ 0 

Sculptor Dwarf 5.527 ൈ 10ଷ଼ 1.009 ൈ 10ଷ଺ 0 

Sextans Dwarf 9.543 ൈ 10ଷ଼ 1.051 ൈ 10ଷ଺ 0 

Ursa Major I 1.304 ൈ 10ଷ଼ 7.717 ൈ 10ଷହ 0 

Leo II 2.030 ൈ 10ଷ଼ 8.673 ൈ 10ଷହ 0 

Leo I 1.859 ൈ 10ଷ଼ 8.498 ൈ 10ଷହ 0 
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Andromeda II 6.447 ൈ 10ଷ଼ 7.970 ൈ 10ଷହ 0 

Andromeda III 1.095 ൈ 10ଷଽ 8.187 ൈ 10ଷହ 0 

Cetus Dwarf 1.823 ൈ 10ଷ଻ 1.285 ൈ 10ଷହ 0 

Andromeda VI 1.227 ൈ 10ଷଽ 8.221 ൈ 10ଷହ 0 

Aquarius Dwarf 1.796 ൈ 10ଷ଼ 6.810 ൈ 10ଷହ 0 

SagDIG 6.555 ൈ 10ଷ଺ 6.013 ൈ 10ଷସ 0 

Antlia Dwarf 2.068 ൈ 10ଷ଻ 4.759 ൈ 10ଷଷ 0 

Boötes Dwarf 5.845 ൈ 10ଷଽ 1.104 ൈ 10ଷ଺ 0 

Ursa Minor Dwarf 1.839 ൈ 10ଷଽ 1.081 ൈ 10ଷ଺ 0 

Draco Dwarf 9.799 ൈ 10ଷ଼ 1.053 ൈ 10ଷ଺ 0 

Carina Dwarf 3.489 ൈ 10ଷ଼ 9.561 ൈ 10ଷହ 0 

Canes Venatici II 4.669 ൈ 10ଷ଻ 4.974 ൈ 10ଷହ 0 

Leo IV 1.426 ൈ 10ଷ଻ 2.201 ൈ 10ଷହ 0 

Leo T 2.364 ൈ 10ଷ଻ 3.229 ൈ 10ଷହ 0 

Phoenix Dwarf 8.207 ൈ 10ଷ଻ 2.733 ൈ 10ଷହ 0 

Andromeda VII 1.163 ൈ 10ଷଽ 8.205 ൈ 10ଷହ 0 

Andromeda I 4.042 ൈ 10ସ଴ 8.508 ൈ 10ଷହ 0 

LGS 3 (Pisces Dwarf) 1.147 ൈ 10ଷ଻ 1.752 ൈ 10ଷହ 0 

Andromeda V 3.101 ൈ 10ଷଽ 8.398 ൈ 10ଷହ 0 

Andromeda XI 1.762 ൈ 10ଷଽ 8.309 ൈ 10ଷହ 0 

Andromeda XII 8.938 ൈ 10ଷ଼ 8.116 ൈ 10ଷହ 0 

Andromeda XIII 7.895 ൈ 10ଷ଼ 8.065 ൈ 10ଷହ 0 

Tucana Dwarf 4.055 ൈ 10ଷ଻ 2.148 ൈ 10ଷହ 0 

Ursa Major II 2.892 ൈ 10ଷ଼ 9.288 ൈ 10ଷହ 0 

Coma Berenices Dwarf 8.420 ൈ 10ଷ଼ 1.043 ൈ 10ଷ଺ 0 

 

 

   When the centrality measurements in Table 2 are examined, three galaxies with the highest degree of 

magnitude are Milky Way, LMC, and Andromeda. The reason for lower weighted degrees of the other central 

nodes, Triangulum and NGC 3109, is because high-mass galaxies, such as LMC, SMC, and M32, are close to 

Milky Way and Andromeda and thus produce more weighted edges. Betweenness values are different from 

zero for four central nodes and highest in Milky Way and Andromeda.  

   Due to the undirected structure of the network, there is not a significant difference between the closeness 

centrality values of galaxies. Here Milky Way has the highest whereas Andromeda has a much lower value. 

From the dot charts of three centrality measurements (Fig. 3), it is clear that the galaxies with masses above the 

cluster’s average, especially Milky Way and Andromeda (order of 10ଵଶۨܯ), have the higher centrality values. 

This indicates that the galaxies of high gravitational attraction provide the integrity of the cluster in the 

weighted network models where the central node (hub) is selected. 
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4 Conclusion 

Based on the idea that galaxy clusters could be modeled in the concept of weighted networks, galaxies have 

been examined, which are the nodes of the Local Group. Gravitational effects between the galaxies of this 

cluster are constructed using a weighted network model. The reason for choosing the Local Group is its 

familiarity, which includes almost exact positions of every galaxy and masses of many. Nevertheless, mass 

estimations of some galaxies which are not known have been calculated by their absolute and apparent 

magnitudes and an estimation of the M/L ratio involving the mass contribution of the dark matter. The 

gravitational attraction matrix has been formed considering the positions of galaxies concerning each other.  

   Central nodes, which are the galaxies, not satellites of any galaxies by their location, have been determined, 

and all other edges have been adjusted based on them. The final structure of the network was already weighted 

and undirected. Massive and central galaxies have more weighted edges than others. However, centrality 

measurements show to what extent a galaxy is or is not central are those for centrality. The highest values in 

degree, closeness, and betweenness centrality measurements have been found for our galaxy, the Milky Way. 

The results indicate that Milky Way in a position that could be central to the whole group according to the 

Local Group's map and with a mass larger than in other galaxies is the most central node of the system. For 

Andromeda, another massive galaxy, the measurements have given similar consequences. The obtained results 

show that there are correlated states between centrality measurements and mass. 

   For the proposed weighted network model, degree centrality measure could be counted as directly 

correlated with the mass. Edge weights increase in accordance with the massiveness of any galaxy in the 

model. Betweenness centralities are indirectly correlated with the mass, but considering a galaxy with a mass 

greater than the cluster’s average; it can attract several dwarf galaxies as satellites making itself a hub called a 

central node. On the other hand, betweenness scores are high since the massive galaxies will have more 

satellites than the other ones and as the non-satellite galaxies tend to be connected to them to ensure cluster 

integrity. The reason why there is no direct correlation between closeness centrality and mass could be 

interpreted as the network’s undirected structure. In undirected networks, the closeness value of each node can 

be the same as each other (Okamoto et al., 2008). Now that all edges are bidirectional, the shortest distances 

between them become shortened. 

   Since gravitational attraction is an inter-object and bidirectional concept, it has to be modeled in an 

undirected and weighted fashion. The present model indicates that massive galaxies seem to be central nodes 

that maintain the integrity of the Local Group’s structure. However, it is known that if relatively massive 

galaxies remain near or close to those who are more massive than them, they could inevitably be their satellites. 

Centrality values of galaxies are correlated with how many satellites they could have. 
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