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Abstract 

In this study, a brand-new chaotic system with a particular set of parameters is presented. In addition, this 

study offers instructions about how to resolve the new system. Also demonstrated and stated are some of the 

system's dynamical characteristics. In essence, this work demonstrates the identification of the fixed points 

for the system, dynamical analysis utilizing the complementary-cluster energy-barrier criteria (CCEBC), 

eigenvalue discovery for stability, and Lyapunov exponent discovery to examine some of the dynamical 

behaviors of the system. Additionally, this research uses the first Lyapunov coefficient to determine the Hopf 

bifurcation of the new three-dimensional system. With the help of MATLAB, many parameters are changed 

to display images and diagrams for chaotic systems. 
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1 Introduction 

The dynamical system is well-known in the real world for its many applications, including in a population 

growth model. We may examine how populations have changed through time and anticipate how many 

people there will be in the future.When Lorenz was making a weather forecast in the early 1960s, he 

introduced the chaotic dynamical system. He understood that even slight variations in the fundamental 

elements of the weather system could have unexpected effects on the outcome.Since the system is reliant on 

its initial conditions, he later gave it the moniker (Chandler and Lorenz, 2008) "butterfly effect". 

Mathematical study has been highly interested in chaos because it may provide fresh insights into all facets of 

life. Over the past 20 years, chaos in engineering systems, such as nonlinear circuits, has gradually gone from 

being only a fascinating phenomenon to one with practical significance and uses. Numerous disciplines have 

found use for or great potential in chaos, including applications of biomedical engineering to the human heart 

and brain, efficient liquid mixing, high-performance telecommunication circuit design, and power system 

collapse prevention, to name a few (Chen, 1999; Chen and Dong, 1998). Therefore, in such applications 
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where chaos is significant and valuable, creating chaos becomes a critical issue. 

Some researchers who have modified the Lorenz system have accidentally discovered or tried to learn 

about the practical uses. The modified Lorenz system has been given in some earlier work by Zhou et al. 

(2008), Qi et al. (2005), and Yan (2007), who have also examined the system's stability and dynamical 

behavior.Other chaotic models exist as well, including the Rösler system, the four-wing hyper chaotic 

attractor, and transient chaos produced by a brand-new 4-D quadratic autonomous system by (Cang et al., 

2010). One of the modified chaotic dynamical systems has been discovered by (Lü and Chen, 2002; Lü et al., 

2002) from the Lorenz system itself. Zhou et al (2008) has recently conducted some study on a novel chaotic 

system that has since been given the term Zhou system. The article displays some fundamental dynamical 

features, including the continuous spectrum, Lyapunov exponents, Poincaré mapping, fractal dimensions, 

bifurcation diagrams, and chaotic Zhou system dynamical behaviors. Roslan (Tee et al., 2013) examined the 

issue more recently in relation to solving the Zhou chaotic system using Euler's approach. One of the simplest 

methods for finding a differential equation's numerical solution is said to exist. 

Synchronization was thoroughly researched in the early stages of chaos study. The foundations of the 

Fitz-Hugh Nagumo neural system and the Hindermarsh-Rose neuron model have been successfully 

established by Mamat et al. (2011, 2012). Additionally, the synchronizations of periodic and chaotic bursting 

neurons are investigated.Some new 3D chaotic system was extensively investigated by (Benkouider et al., 

2021; Vaidyanathan et al., 2019). 

Moreover, Hopf bifurcation is extensively researched in order to better understand how dynamical 

systems behave. According to Salleh et al. (2011) the dynamical model of a three-species food chain with 

Lotka-Volterra linear functional response has been investigated. They also investigated the interplay of a 

three-species feeding chain with a Michaelis-Menten type functional response. In these works, analytical and 

numerical studies of Hopf bifurcation points have been conducted. MataSanjaya et al. (2012) are more 

articles that focus on dynamical models and Hopf bifurcation. Yan (2007) has conducted additional studies on 

Hopf bifurcation in his investigations of the dynamical behavior of Lorenz-type systems using the 

complementary-cluster energy-barrier criterion. The first Lyapunov coefficient is also used to study the 

system's Hopf bifurcation. In a research by Li et al. (2007), his group looked at the generalized Lorenz 

canonical form (GLCF), which is the Hopf bifurcation of a unified chaotic system. 

Chaos is applicable to a wide range of situations. A chaotic dynamical system may also bring a new 

technique or system that will aid in the understanding of mathematics, making it not only significant and 

useful but also crucial. The Lorenz system, which has been modified from the Lorenz system, will serve as 

the main foundation for this research (Lorenz, 1963; Sparrow, 1982; Robinson, 2004; Curry, 1978). The 

following is a description of the Lorenz system equations: 

 

                       
         (1)                                           

  

 

where 10, 8/3 and 28 causes chaos in the system, and ,  and , respectively, are real 

constant parameters. 

 

2 A New Chaotic System 

A brand-new three-dimensional continuous system was put forth as follows by Lei and Wang (2014): 
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         (2) 

   

 

when variables , , and  are present, and real parameters , , , and . 

2.1 Mathematical properties 

Some fundamental dynamical characteristics of equation (2) are covered in this subsection. 

 Symmetry  

When using the coordinate transform , , , , , the reflection about the z axis, 

system (2) exhibits a natural symmetry. 

 The Z axis 

 The  axis, 0 is invariant. All trajectories that begin on the  axis will stay on it and 

move in the direction of the origin 0,0,0 . In addition, when viewed from above the plane 

0, the trajectories that rotate around the  axis do so in a clockwise direction. 

 Dissipativity 

The flow's divergence . As a result, the flow contracts the volume 

element  into a volume element in time .Since the system is dissipative, neither 

unstable periodic orbits nor unstable stationary points may exist. Any stationary points and orbits 

that are unstable must also be unstable. The presence of unstable objects would suggest the 

presence of a flow-expanded volume close to the object. The following inequality, , 

must be satisfied in order to make the divergence negative. In that sense, the system (2)'s 

dissipativeness is conditional. 

2.2 Dynamical analysis by CCEBC method  

Now, using the complementary-cluster energy-barrier criteria (CCEBC) (Xue, 1999), we will ascertain the 

dynamical behaviors of the dynamical system (2). This approach works well for telling chaotic orbits apart 

from periodic and quasi-periodic ones. The three dimensional system is 

 

 

 

 

 

which has a chaotic attractor like Chen system shown in Fig. 1 when 35 , 3, 20, 28.3. 

 

Fig. 1 System(2)’s chaotic attractor. 
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Let system (2)'s first two differential equations be 

 

 

       (3) 

 

where  is a recognized function of the variable , the time. A linear, two-dimensional system with constant 

coefficients is system (3) when . Therefore, its dynamical behavior is quite basic and universal. 

We obtain the following characteristic equation by linearizing system (3) about its 0,0  equilibrium point. 

 

       (4) 

 

The eigenvalues ,  of (3) are used to base the next observations. 

 

1. If     and 0  then the eigenvalues satisfies 0  . This demonstrates that the 

equilibrium point 0, 0  in the two-dimensional plane is a saddle point. Fig. 2(a) depicts the solution curve in 

the  plane, with the direction arrow pointing in the direction of the orbit as  grows. 

2. If   then equation (3) has two different negative real roots. In this instance, the 

0,0  equilibrium point is a node. Fig. 2(b) displays the  plane solution curve. 

3. If then the complex conjugate eigenvalues of equation (3) have a negative real portion. 

Here, the single equilibrium point 0,0  is the focus. Fig. 2(c), where the direction arrow points in the 

direction of the orbit as  increases, displays the solution curve in the  plane. All orbits spiral back 

towards their origins when  reaches infinity. 

 

 
(a)    (b) (c) 

 

Fig. 2 The phase portrait of system (3) (a) , (b) , (c) . 

 

 

The time series , ,  of system (2) is generated for any initial condition 0 ,  0

,  0  and time step 0.5. 

10



Selforganizology, 2023, 10(3-4): 7-21 

 IAEES                                                                                      www.iaees.org 

 
Fig. 3 The chaotic time series of  with  35, 3, 20 and 28.3. 

 

 

According to Fig. 3, when the  orbit crosses the straight lines,  and  

alternately and repeatedly for a number of times   ∞. These two lines divide the axis into three distinct 

domains: ( ∞, , , , and , ∞ .In these three domains, system  

3  exhibit various dynamical behaviors. orbit's frequent passage through these two points causes 

complex dynamical behavior, bifurcations, and chaos. 

2.3 Bifurcation of equilibrium 

Three equilibrium points exist in system (2). They are 

     0,0,0  

 , , ) 

  = ( , , ) 

Now we will define some bifurcations depending on the equilibrium points. The jacobian matrix at O of 

system 2  is 

0
0

0 0
 

and this jacobian matrix's eigenvalues 

 

,
2 2

√ 2 4
2

,
2 2

√ 2 4
2

 

 

For 2 √2  equilibrium point O is a sink and if  then equilibrium point 

O is a node.At , a pitchfork bifurcation for O appears. We now have three equilibrium points for 

 as a result of O changing into an unstable saddle and two symmetric sinks being formed simultaneously. 

These bifurcation does not depend on the parameter . 
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Hopf bifurcation emerges from the value of  where the complex 

cojugate eigenvalues are  and  is a real number. 

2.4 Linear stability analysis 

From the basic dynamical behavior of the system (2) it can be concluded that 

1. If  then system (2)  has one real equilibrium point 0,0,0  and it is asymptotic stable. 

2. If  then system (2) has three real equilibrium points 

    0,0,0 , , , ),  = ( , , ) 

and 0,00  is a saddle point. 

 

Now an interesting thing is for ,  we get the same characterstic polynomial of system 2 . 

 

2 2           (5) 

 

So both ,  have same stability. 

Let 

 

      

        

     2 2  

 

The real parts of the roots   are therefore determined to be negative under Routh-Hurwitz criteria if and only 

if 

 

0, 

2 2 0 

2 2 0 

 

The coefficients of equation 5  are all positive. So, 0  for all 0. If equation 5   has two 

complex conjugate roots and real part of the roots are positive then there is instability. Let , ,  are three 

roots of equation 5  where  and   are complex conjugate such that  and  for some 

real number  . Since the sum of three roots is  

 

So we have  ,which is the stability margin. On the margin 

0 2             2  

That is, 

,
2 4 2 4 4

2
 

3 Hopf Bifurcation Analysis 

At the location , , , the Jacobian of system (2) is given 

0

2 0
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This Jacobian, at 0, 0, 0   has no imaginary characteristic eigenvalues. Therefore 0, 0, 0  are not Hopf 

points of the system. 

Notice that the Jacobians of system  2  at ,  

 

0
√

2√ 0
 

 

And 

0
√

2√ 0
 

respectively. They have the same characteristic polynomial: 

| | 2 2          6  

Suppose that | | has a pure imaginary rootλ iω, . Substituting into 6  yields 

 

   2 0 

0 

 

Putting the second equation into the first one gives 

2 0                   7  

This is the bifurcation surface and  

Since the equilibrium points and are not the origin 0,0,0 . Therefore, firstly, utilizing the change of 

variables, we must translate the origin of the coordinates to . 

 

√  

  √  

 

 

This transforms system 2  into equivalent system. 

 

 

              8  

   
 

The characteristic equation of the above system is same of (8). Consequently, Hopf bifurcation occurs at the 

origin 0,0,0  of (8). Hopf bifurcation analysis is particularly challenging of system (8), on the bifurcation 

surface 7 .We just consider the case out of convenience 4 , 2 and  4  which leads to 

4 .  
Thus the Jacobian matrix at origin is, 

 

4 4 0
4 4 √10

2 √10 0 2
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The eigenvalues of this matrix are 2 , 6 2 , 6 2 . 

By rigorous calculation we get these four vectors. 
1

1
2

1

√10
5

2 1

 

1
1
2

1

√10
5

2 1

 

1
1

√10
5

1
 

1
1

√10
5

1
 

 

The system (8) solely contains bilinear terms.Therefore the bilinear matrix ,  defined for two vectors  

, ,  and , ,  can be expressed as  

, 0,2 , 2  

, , 0,0,0  

   1/ 10 1/ 10   √10 / 20

7/ 20 1/ 10 √10 / 20

√10 / 10 √10 / 10 0

 

 

,
0

1.2649   2.5298
2

 

,
0

  1.2649   2.5298
2

 

 

,
1
10

 0.1265   0.0632
   0.1265   0.0632

0.8   0.4
 

 

,
1
10

0
  1.6   0.8

2
 

 

, ,
 2.8649   2.0649

10
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2
1 0.0329   0.0842 0.0271   0.0300    0.0073   0.0137

 0.0487   0.0185 0.0329   0.0842 0.0201   0.0283
   0.0401   0.0565 0.0146   0.0274   0.0323   0.1061

 

 

2 ,
1  0.0270   0.1339

0.2947   0.0799
0.0138   0.1407

 

 

,
1 0

  0.0277   0.2814
2

 

 

, ,
 1.2372   1.5463

 

Now, the first Lyapunov coefficient is given by 

ℓ 0
1
2

, , , 2 , , , , 2 ,  

1
8

2 , , , ,  

0.138
0 

So, the Hopf bifurcation of system 2  for the equilibrium points      are of subcritical type. 

From the following graph it is verified that system 2  has subcritical type Hopf bifurcation. 

 

 

 

Fig. 4 Subcritical Hopf bifurcation of system (1). 

 

 

5 Bifurcation By Varying Parameters 

Now we will show some bifurcation by varying parameters of system (2). Here we have showed bifurcations 

by keeping fixed three parameters and varying one parameter. In next two subsections bifurcation by varying 
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parameter a and d are shown. 

5.1 Bifurcation by varying parameter a 

Here we have fixed the value of parameters 3, 20, 28.3 and changed the value of  in the 

range 27,35 . We conclude the following things  

 When 27,28  the system has hopf bifurcation  

 For 29,34  the system (2) changed it’s behaviour dynamically. 

 When 35 we get a chaotic Chen type attractor 

The maximum lyapunov exponent shows the change of the system (2)’s behaviour. 

 

 

 

 

(a) 

 
(b) 

 
(c) 

 
(d) 
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(e) 

 

(f) 

 

(g) 

 

(h) 

 

                                                  (i) 

Fig. 5 (a)-(h) Dynamical change of system (1) with change of parameter . (i) Maximum lyapunov exponent of system (1) with 

respect to parameter . 

 

5.2 Bifurcation by varying parameter  

Here we have fixed the value of parameters 35, 20, 3  and changed the value of  in the 

range 21, 35 . We conclude the following things – 

 When 21,22  the system is not chaotic. 

 For 23, 30  the system (2) changed it’s behaviour dynamically and have some chaotic 
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attractors. 

 When 35 the system meet it’s hopf bifurcation. 

 The maximum lyapunov exponent shows the change of the system (2)’s behaviour with the change of 

parameter . 

 

 

 

 

 

(a) 
 

(b) (c) 

 

(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 
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(j) 

 

(k) 

 

(l) 

 

(m) 

 
 

(n) 

 

 

(o) 

 

Fig. 6 (a)-(n)represents dynamical change of system (1) with change of parameter  . (o) Maximum lyapunov exponent of system 

(1) with respect to parameter . 

 

 

6 Conclusions 

In this paper, we looked at the system's dynamic behavior and fundamental dynamic analysis. Additionally, we 

conducted a complementary-cluster energy-barrier criterion (CCEBC) analysis and used the Lyapunov 

exponent to examine the chaotic behavior.The system exhibited chaotic behavior under a specific set of 

conditions.To ascertain the system's behavior, we looked at the system (2) using the Routh-Hurwitz criterion. 

Furthermore, we have demonstrated that the system does experience Hopf bifurcation using the first Lyapunov 
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coefficient. We have demonstrated that the system contains two non-zero fixed points, of which the Hopf 

bifurcations are subcritical, for the observed results. 
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