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Abstract 

An interactive interior point method for solving multiple-objective linear programming problems has been 

proposed. The method uses a single-objective linear variant in order to generate, at each iterate, interior search 

directions. New feasible points are found along these directions which will be later used for deriving best-

approximation to the gradient of the implicitly-known utility function at the current iterate. Using this 

approximate gradient, a single feasible interior direction for the implicitly-utility function could be generated 

by projecting this approximate gradient onto the null space of the feasible region. An interior step can be taken 

from the current iterate to the next one along this feasible direction. During the execution of the algorithm, a 

sequence of interior points will be generated. It has been proved that this sequence converges to an  
optimal solution, where   is a predetermined error tolerance known a priori. A numerical multi-objective 

example is illustrated using this algorithm.  

  

Keywords multi-objective mathematical programming; multi-criteria decision making; multi-criteria 

optimization; interactive methods; interior point methods. 

 

 

 

 

 

 

 

 

1 Introduction 

After the seminal algorithm of (Karmarkar, 1984), for solving linear programming problems in polynomial 

time 3.5( )O n L arithmetic operations, where n is the number of unknown variables including slack (surplus) 

variables and L is the length of the input data (total number of bits used in the description of the problem 

data), a great number of the so-called interior point methods for linear programming have been proposed. 

These methods can be classified in two main categories: The first category is the extensions and variants of 

Karmarkar’s algorithm which can be divided also into two subgroups: 

Selforganizology     
ISSN 2410­0080   
URL: http://www.iaees.org/publications/journals/selforganizology/online­version.asp 
RSS: http://www.iaees.org/publications/journals/selforganizology /rss.xml 
E­mail: selforganizology@iaees.org 
Editor­in­Chief: WenJun Zhang 
Publisher: International Academy of Ecology and Environmental Sciences 



Selforganizology, 2024, 11(3-4): 54-75 

 IAEES                                                                                      www.iaees.org    

1. The projective algorithms (Karmarkar, 1984; de Ghellinck and Vial, 1986, 1987; Anstreicher, 

1986; Darvay, 2003; Naseri and Malek , 2004  ;Yu and Sun, 2009; Wang and Luo, 2015 and Todd 

and Burell, 1986). 

2. The “affine” methods (Barnes, 1986; Gay, 1987; Gill et al, 1986 and Vanderbei et al, 1986).   

The second category is the path following approaches as: (Gonzaga, 1989 and Renegar, 1988). 

     The methods in the second group are polynomially bounded and require 0.5( )O n L iterations. The overall 

complexity is 3( )O n L . The projective methods in the first group are also polynomially bounded. They 

require ( )O nL iterations and 3.5( )O n L operations. 

     Following these proposals, it is useful to generalize these ideas of interior point technique to the domain of 

multi-objective programming. Therefore, two algorithms are proposed for solving single and multiple-

objective linear programming problems based on projecting of gradients onto the null space of the feasible 

region of problem. 

     The first algorithm developed in this paper is an interior point method for solving single objective linear 

programming problems. The main idea focuses on a projection operation onto the null space of the feasible 

region which computes a feasible direction (line search) in each iteration in at most 2( )O nm arithmetic 

operations, where m is the number of constraints ( m n ). It is proven that the number of iterations required 

for the algorithm to converge to a good solution is bounded and estimated to be no more than ( )O nL

iterations and 2 2( )O n m L arithmetic operations.  

     The second algorithm proposed is an interior point method for interactive multi-objective linear 

programming problems. The method uses a single-objective linear variant in order to generate, at each iterate, 

interior search directions. New feasible points are found along these directions which will be later used for 

deriving best-approximation to the gradient of the implicitly-known utility function at the current iterate. Using 

this approximate gradient, a single feasible interior direction for the implicitly-utility function could be 

generated by projecting this approximate gradient onto the null space of the feasible region. It can be taken an 

interior step from the current iterate to the next one along this feasible direction. During the execution of the 

algorithm, a sequence of interior points will be generated. It has been proved that this sequence converges to 

an   optimal solution, where  is a predetermined error tolerance known a priori. 

     The multi-objective linear programming problem is ambiguous since usually the objective functions are 

conflicting and pursuing the optimum, with respect to each objective, leads to different solutions. This 

ambiguity may be solved by introducing a utility function (or preference function) defined over the space of 

objectives. It is supposed that the decision-maker is capable to present his global preferences through this 

function. This function is not necessarily being explicitly known but it is supposed to satisfy certain conditions 

as being continuously differentiable, concave and strictly increasing on the objective space in order to ensure 

the global convergence and to reach a global optimum. If the utility function is explicitly available, then it is 

easy to find the approximate gradient through the values of the utility function and the values of the objective 

functions at the current iterate. In the contrary case, when the utility function is implicitly known the 

approximate gradient can be found through the values of the objective functions and the analytic hierarchy 

process ( AHP ) technique at the current iterate. For more details about the AHP technique, the reader is 
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invited to consult the references (Saaty, 1988; Arbel, 1994; Arbel and Oren, 1996; Zhang, 2019). 

 

2 Statement of the Linear Programming Problem (LP) 

Consider the linear programming problem given in standard form through 

              

0

Tmaximize c x

subject to Ax b

x




                                      

(1) 

where , nc x R , mb R  and A is m n matrix, n is the number of unknown (decision) variables 

including slack variables and m is the number of linear constraints so that m n  .  

     Assuming that the feasible set:  / 0nX x Ax b and x   R is compact and convex in the 

nonnegative orthant of nR . 
     It is easy to transform the canonical feasibility problem (1) into the following equivalent affine feasibility 

problem: 

              
1

0

0

T

T

maximize c y

subject to d y

Ay

y









                                      

(2) 

where 1ny R  is the new unknown variables, 1
1(0, ,..., )T n

nc c c   R , A is an  ( 1)m n  matrix 

defined as: 0 ( 1,..., )i ia b i m   , ( 1,..., , 1,..., )ij ija a i m j n   , and 1T nd R  defined as: 

1 0

0 1,...,j

for j
d

for j n


  

 

     All the constraints in (2) are linear, i.e., homogenous, except the first one 1Td y  which is affine and can 

be interpreted as a normalization constraint.  

     The feasible set of (2):  1 / 0, 1 0n TY y Ay d y and y    R is also compact and convex in the 

nonnegative orthant of 1nR . 

     Let kY be the diagonal matrix  k kY diag y . Using the linear transformation   1kz Y y


 , we 

obtain a transformed problem: 

                                                                         
1

0

0

T k

T k

k

maximize c Y z

subject to d Y z

AY z

z









       (3) 
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where 1nz R  and the feasible set of (3):  1 / 0, 1 0n k T kZ z AY z d Y z and z    R is also 

compact and convex in the nonnegative orthant of 1nR .  
     The following algorithm is designed to work in the relative interior of the feasible set X of (1). It is 

capable of solving problem (2), where in each iteration, 0k  , problem (3) is solved on a sphere centered at 

the point 1(1,...,1)T ne  R and inscribed in the feasible set Z of problem (3). 

2.1 Algorithm for solving LP problem 

Step 1. Initialization. Let  0   be a tolerance level. Let    0 0 0
1 ,..., ( )

T

nx x x Int X  . 

Let    0 0 0
11, ,...,

T

ny x x , 1(1,,.....,1)t ne R    and 0k   the iteration counter.  

Step 2. Change. Let  k kY diag y , 
T

k kd
B Y

A

 
   
 

 

Step 3. Projection. Find 1k np R  and 1k mu R  which solve the linear system of equations 

            

 
0

Tk k k k

k k

p B u Y c

B p

 





                                       

“ kP ” 

where kp is the projection of kY c onto the null space of kB and ku is the dual variable. 

Step 4. Termination test. If kp   then stop, the point ky is an optimal solution of problem (2) and 

consequently the point given by ( 1,..., )k k
j jx y j n  is an optimal solution of problem (1). 

Step 5. Normalization. Define  
k

k

k

p
q

p
  

Step 6. Line search step. Find k which satisfies the following inequalities: 

 
 

2

0

0

0
2 3 1

k

k k

kk
T k

k

e q

e q










 

  


 

A possible choice for k  which enforces these conditions is  0, 0.6k  . 

Step 7. New iterate. Let  

57



Selforganizology, 2024, 11(3-4): 54-75 

 IAEES                                                                                      www.iaees.org    

1

1 1

k k k

k k k

z e q

y Y z



 

 


 

set 1k k   (increment the iteration counter) and return to step 2. 

 

Remark. kp is the set of so-called normal equations whose solution kp is unique and is the projection of the 

vector  kY c onto the null space of the matrix kB . This problem is purely linear and can be solved in 

2( )O nm  arithmetic operations. 

 

Lemma 0.  When  0k
k

p   , then 0 ( 0)T ke p k   . 

Proof. Taking into consideration the Holder inequality 
0

1

1

n
k k

i
i

p p
n 


   and the condition

0k
k

p  , it can be concluded that: 

                                                          
0

0
n

k
i k

i

p 


 .                                       (a) 

From step 3 of the previous algorithm, we can write the following: 

0 0

n n
k k
i i i

i i

p c y
 

    and 1 1

0 0

n n
k k
i i i

i i

p c y 

 

   .  

From step 7, we can find that: 1 ( 0,..., )k k k k k
i i i iy y y q i n    . 

So  1 1

0 0 0 0

0
n n n n

k k k k k k k k k
i i i i i i i i

i i i i

p p c y y c y q p  

   

          , then  

                                             1

0 0

( 0,1,...)
n n

k k
i i

i i

p p k

 

                                 (b) 

From (a) and (b), it can be concluded that 
0

0 ( 0,1,...)
n

k
i

i

p k


   , and the proof of the lemma is 

completed. 

2.2 Complexity calculation 

First, we propose some propositions needed for calculation the complexity of the algorithm. 

Definition. If A is n n nonsingular matrix, nb R  and : n n
AT R R so that ( )AT x Ax b  , then 

AT  is called an affine transformation. Affine transformations have several important priorities. One of them is 
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the affine transformations preserve set inclusion if: 

( ) { : , }n
AT W Ax b x W     R  

Proposition 1. If ' nW W  R , then ( ) ( ') n
A AT W T W  R . So volumes are changed by a constant 

factor and the relative volumes are preserved. 

Proposition 2. If  nW  R  is full dimensional and convex, then ( ( )) det ( ).Avol T W A vol W    

Considering the propositions 1 and 2, it can be concluded that for any ellipsoid there is an affine 

transformation which gives a sphere centered at the point (1,1,...,1)Te  when it is mapping on the given 

ellipsoid. 

     Suppose that kE is an ellipsoid centered at ky in the iteration number k and 1kE  is an ellipsoid centered 

at 1ky  in the iteration number 1k  . 

     The inequalities: 

1

1

0 0

1
0( 0,..., )

1

n nn

j j j
j j

v v and v j n
n



 

 
     

  , express the relation between 

the geometric mean and the arithmetic mean on the non negative orthant of 1nR . 
     In view of the previous inequality it followed that: 

    
1

1

0 0 0

1
1 1 1

1 1

kn n nn
k k k k k

j j j
j j j

q q q
n n

 


  

 
        

    

As 
0

0
n

k
j

j

p


 , then
0

0
n

k
j

j

q


 . The last inequality becomes:  

 
1

1

0 0

1 1 1
1

kn nn
k k k

j j
j j

q q
n




 

 
      

   

By applying the proposition 2, it can be concluded that: 

0
1 1

1

0

1

( ) ( )
1( ) ( )

n
k
jk k

j
k k

n
k
j

j

y
vol B vol E

vol B vol E

y


 










, where kB and 1kB   are spheres centered at (1,1,...,1)Te   with 

radius k k kr q and 1 1 1k k kr q      1k kr r  , then 

1

0

1 1

0

( ) ( )

( ) ( )

n
k
jk k

j
nk k

k
j

j

y
vol B vol E

vol B vol Ey




 







. So 
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 
1

1 1
0

0

0

( ) ( )
1 1

( ) ( )

n
k
jk k n

j k k
jnk k

k j
j

j

y
vol E vol B

q
vol E vol By




 







   





. 

It follows that 1( ) ( )k kvol E vol E  , then ( ) 0k
k

vol E  . 

     Using the development of Taylor for the function log(1 )  around 0  with 1  , it can be seen that: 

2

log(1 ) ( )
2

       , where 
1

3

( 1)
( )

j j

j j

 





 . 

So: 
1

1

3 3 3

( 1)
( ) 1

j jj j
j

j j jj j j

  
  



  


      . 

Since 3j  , then 
1 1

3j
 . It follows that:  

3

3

( )
3 3 1

j

j

 
 







 
 . 

So  
32

log(1 )
2 3 1

 


   


. 

Let k k
jq  , then 

     
2 3

2
log(1 )

2 3 1

k k k
jk k k k k

j j j k k
j

q
q q q

q

 
 


   


. 

It follows that 
     

32

2

0 0 0 0

log(1 )
2 3 1

k kkn n n n
jk k k k k

j j j k k
j j j j j

q
q q q

q


 

   

   


    . 

As:  2

0

1
n

k
j

j

q


 , 
3 3

0

n
k k k k

j
j

q q 


 , and ( 0,..., )k k k k
jq q j n   , then the last inequality 

becomes: 
 

 
32

0 0

log(1 )
2 3 1

k kkn n
k k k k

j j k k
j j

q
q q

q


 

 

   


   

Hence 
   

 

2 3

0 0

log(1 )
2 3 1

k kn n
k k k k

j j k
j j

q q
 

 
 

   
  . 

     The value of k should be chosen so that 
 
 

2

0

0
2 3 1

kkn
k
j k

j

q




  
 , then it can be written that: 

0

log(1 ) , 0
n

k k
j

j

q
n

 


    . So 
0

(1 ) , 0
n

k k n
j

j

q e


 




   . 
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     From this relation and since  1

0

( ) ( ) 1
n

k k k k
j

j

vol E vol E q



   , it follows that 

1
1 0( ) ( ) ... ( )

k
k k n nvol E vol E e vol E e

  
       , that gives 

1
1 0( )

k
k nvol E V e

 
   . 

Choosing dLe  , where d is a positive number and L  is the length of the input data (total number of bits 

used in the description of the problem data), then 1( )kvol E    after K iterations, where 

1

0
1 log 1 ( )

n
K O nL

V




        
   

, and u    denotes the integer part of 0u  . 

     From step 3 of the algorithm, the problem kP  is a set of the so-called normal equations which has a unique 

solution. It is known that this problem is purely linear and can be solved in 2( )O nm  arithmetic operations. 

The proposed algorithm stops in no more than ( )O nL iterations, then it can be seen that the complexity of the 

algorithm is 2 2( )O n m L . Consequently, the solution of the problem LP is reached in polynomial time. 

2.3 Convergence analysis  

From the proposed algorithm, we have ky Y so that 0kp  . Suppose that there is another point *y Y

so that *T T kc y c y  . This implies *( ) 0T kc y y   which means that the vector * * kd y y  is an 

improvement direction. Since 1k k k k ky y Y q Y    , then let *kw y d  where 0 1  . If  

* k kd Y q (matrix A is full rank), then * 0k kAd AY q   , this implies * 0Ad  which means the point 

w  is not feasible. 

     For 1  ,we get *y w and that conflicts with the fact that *y  is a feasible point. Then it must be 

* k kd Y q which means clearly 1ky w  . 

     For 1  , we have 1k ky y w   and this means that ky  is an accumulation point in Y , the condition 

of optimality of Karush-Kuhn-Tuker (KKT) in accumulation point ky are given as follows: 

1 1,k m nu  
  R R : 

0

0 ( 0,..., )

TT
k

k
i i

d
c u I

A

y i n





 
    
 
 


  
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To demonstrate the verification of these conditions, from step 3 of the algorithm, we can write the following 

equation (at 0kp  ): 

0

TT
k k kd

Y c Y u
A

 
   

 



 

As the proposed algorithm creates a sequence of points  
0,1,...

k

k
y


contained in Y set with 

0 ( 0,..., )k
jy j n  and 0k  , then it can be concluded that: 

0

TT
kd

c u
A

 
   
 




 

As a result of taking 0 ( 0,..., )j j n   , the conditions of optimality of KKT in point ky are satisfied. 

Sequence  
0,1,...

k

k
y


converges to a solution that satisfies the conditions of optimality of KKT of problem (2). 

Consequently, this succession creates a sequence of points   
0,1,...

k

k
x


 contained in X  and converges to an 

optimal solution of problem (1). 

 

3 Statement of the Multi-Objective Linear Programming Problem (MOLP) 

A multi-objective linear programming (MOLP) problem is generally described through the standard 

formulation:  

                                             

1 1

2 2

.

.

0

T

T

T
r r

maximize v c x

maximize v c x

maximize v c x

subject to Ax b

x









                                  

(4) 

where 1,.., , n
rc c x R , mb R  and A is m n matrix, n is the number of unknown or decision variables 

including slack variables, m is the number of linear constraints such that ( m n ), and r  is the number of 

objective functions. Assuming that the feasible set:  / 0nX x Ax b and x   R is compact and 

convex in the nonnegative orthant of nR . 
     In multi-objective programming, it is supposed that, the decision-maker has to be capable of presenting his 

global preferences through a utility function 1( ) ( ,..., )rU v U v v . This function is not necessarily being 

explicitly known but it is supposed to satisfy certain conditions (continuously differentiable, concave, and 
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strictly increasing in v on the objective space ( )V X  which is the image of the feasible set X (decision 

space) by the objective functions ( 1,..., )iv i r , its derivative satisfies the Lipschitz’s condition in v  on 

( )V X ). 

Lemma 1. If the utility function 1( ) ( ,..., )rU v U v v  is concave and strictly increasing in v on the objective 

space ( )V X , then the function 1( ) ( ( ),..., ( ))rx U v x v x   is concave in x on the decision space X . 

Consider the following relation: 

 

 

                                       
 

 
 where UoV  and the gradient of the utility function with respect of x  is given as follows: 

1

( )
( ) ( )

r

x x j
j j

U v
x v x

v





  

 . 

     Since 1( ) ( ,..., )rU v U v v  is strictly increasing in v on ( )V X , then 0 ( 1,..., )
j

j r
v


 


U

. The 

functions  ( ) ( 1,..., )iv x i r are concave (linear) on X . Therefore:  

* * *, ; ( ) ( ) ( )( ) ( 1,..., )T
j j x jx x X v x v x v x x x j r      , then: 

* *

1 1

( ( ) ( )) ( )( )
r r

T
j j x j

j jj j

U U
v x v x v x x x

v v 

 
   

   . 

Using the last inequality, it can be found that: 

* * *

1 1

*

( ) ( )
( )( ) ( ) ( ) ( ( ) ( ))

( ( ))( ( ) ( ))

r r
T T
x x j j j

j jj j

T
v

U v U v
x x x v x x x v x v x

v v

U v x v x v x


 

  
          

  

 
 

As the function U is concave on ( )V X , then:  

* * * *( )( ) ( ( ))( ( ) ( )) ( ( )) ( ( )) ( ) ( )T T
x vx x x U v x v x v x U v x U v x x x            

So that * *( ) ( ) ( )( )T
xx x x x x      , which signifies that the function ( )x is concave on X . 
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Lemma 2. If  the derivative of the utility function 1( ) ( ,..., )rU v U v v is strictly increasing and satisfies the 

Lipschitz’s condition on the objective space ( )V X , then the derivative of the function 

1( ) ( ( ),..., ( ))rx U v x v x  satisfies the Lipschitz’s condition on the decision space X . 

     It is easy to see that: 

2 1 2 1

1 1

2 1

1

( ) ( )
( ) ( ) ( ) ( )

( )
( ( ) ( ))

r r

x x x j x j
j jj j

r

x j x j
j j

U v U v
x x v x v x

v v

U v
v x v x

v

 
 



 
     

 


  



 


 

The derivatives of the functions ( 1,..., )jv j r satisfy the Lipschitz’s condition on X because they are 

linear, it can be seen that, there is 0L  such that: 

2 1 2 1( ) ( )x j x jv x v x L x x    . 

The function 1( ) ( ,..., )rU v U v v is strictly increasing 0 ( 1,..., )
j

j r
v


 


U

, then it can be found 

2 1 2 1 2 1

1 1

( ) ( )
( ( ) ( )) '

r r

x j x j
j jj j

U v U v
v x v x L x x L x x

v v 

 
     

    . So  

2 1 2 1( ) ( ) 'x xx x L x x     , then the derivative of the function ( )x satisfies the condition of 

Lipschitz on the decision space X . 

Lemma 3. If the derivative of any function ( )x satisfies the following Lipschitz’s condition

( ) ( )x y L x y     , then 
21

( ) ( ) ( ),
2

x y x x y L x y        .  

The following inequality is always true in the Euclidean space: 

,x y x y    (Cauchy-Bunyakovskii inequality) and  

1

0

( ) ( ) ( ( )), ( )x y y x y x y d            ( Cauchy-Bunyakovskii equality) 

1

0

( ), ( ( )) ( ), ( )x x y y x y x x y d              

1

0

( ), ( ( )) ( )x x y y x y x x y d              
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1

0

( ), ( ( )) ( )x x y x y y x y x d              

1

0

( ), ( )x x y L x y y x y x d          

1
2

0

( ), (1 )x x y L x y d        

02
2

1

(1 )
( ),

2
x x y L x y


      
 

  

21
( ) ( ) ( ),

2
x y x x y L x y       . The proof of the lemma is completed. 

 

3.1 Approximate gradient  

The multi-objective linear programming (MOLP) problem (4) is ambiguous since the objective are conflicting 

and pursuing the optimum with respect to each objective leads to different solutions. This ambiguity may be 

solved by introducing a utility function 1( ) ( ,..., )rU v U v v , defined over the space of objectives ( )V X  

and presented by the decision-maker. This function has to satisfy certain conditions as being continuously 

differentiable, concave and strictly increasing on the objective space and its derivative satisfies the Lipschitz’s 

condition in order to ensure the global convergence and to reach a global optimum.  

     If 1( ) ( ,..., )rU v U v v is explicitly available, then we have to find a way to approximate the gradient of 

the utility function based on the values of the utility function at the current iterate. 

     The gradient of the utility function in the decision space X is given as follows: 

1
1

( ) ( )
( ) ( ) .... ( )x x x r

r

U v U v
x v x v x

v v
  

     
 

 

1
1

( ) ( )
( ) ....x r

r

U v U v
x c c

v v
  

   
 

 

where 

1

.
( 1,..., )

.

i

i

n
i

c

c i r

c

 
 
   
  
 

 

in matrix form, the gradient can be written as  
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1 1
1 1

1

( )

....

. .
( ) ( )

. .

( )....

r

x v

n n
r

r

U v

c c v

x C U v

U vc c
v



 
     
       
        

     

where  1.... rC c c , 
1

( ) ( )
( ) ,....,

T

v
r

U v U v
U v

v v

  
     

, and 
1

( ) ( )
,....,

T

x
n

x x

x x

 
  

     
. 

Therefore, to find the approximate gradient ( )x x in the decision space we have to evaluate the gradient of 

the utility function ( )vU v in the objective space. Since the objective matrix C is n r matrix, considering 

each of the r  objective functions by themselves, results in stepping from the current iterate, 0x  along a 

specific step direction to r  end points ( 1,..., )ix i r  with their respective values for the r objective 

functions. The change in the utility function in decision space ( )x in stepping from the current iterate 0x  to 

the set of r  new iterates can be approximated through a first order Taylor’s expansion as follows: 

 
1 0 1 0

0 0

( ) ( ) ( ) ( )

.

.

( ) ( ) ( ) ( )

T
x

r T r
x

x x x x x

x x x x x

  

  

   

   

              or             

1 0 1 0

0 0

( ) ( ) ( ) ( )

.

.

( ) ( ) ( ) ( )

T T
v

r T T r
v

x x U v C x x

x x U v C x x

 

 

    

    

 

These equations can be rewritten as: 
1 0 1 0

0 0

( ) ( ) ( ) ( )

.

.

( ) ( ) ( ) ( )

T T T
v

r T T r T
v

x x U v C x C x

x x U v C x C x

 

 

   

   

    

 

In matrix form, we can write  
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1 0
1 1

1 0

1 0

0
1 1

0

0

.
( ) ( ) ( )

.

.

.

.
( ) ( ) ( )

.

T T

T
v

T T
r r

T r T

r T
v

T r T
r r

c x c x

x x U v

c x c x

c x c x

x x U v

c x c x

 

 

 
 
     
   

 
 
     
   

 

Or 
1 0 1 0

1 1

0 0
1 1

.....

.
( )

.

.....

T T T T
r r

v

T r T T r T
r r

c x c x c x c x

U v

c x c x c x c x



  
 
    
    

 

( )vV U v     

0 1,...,

1,...,
T i T

ij j j

i r
V c x c x

j r

 
     

 

  1
( )vU v V      

( ) ( )x vx C U v    

  1
( )x x C V       

 

From this relation, it can be concluded that, the Taylor’s series approximation for the gradient of the utility 

function ( )x in the decision space involves the value of the utility function at the initial point 0x  and the 

value at the r  new iterates.  

     In the absence of an explicit utility function, these values are unavailable and have to be approximated. One 

way of assessing relative preferences for the ( 1)r  value vectors is through the analytic hierarchy process 

( )A HP  (Saaty, 1988; Arbel, 1994; Arbel and Oren, 1996; Zhang, 2019).     

     To obtain an approximate measure for the utility function at the points of interest we proceed as follows. 

While the value of the utility function at the ( 1)r  points 0 1{ , ,..., }rx x x is unknown, we can still evaluate 

the complete r  dimensional vector of objective functions value, ( ) ( 1,..., )T
i iv x c x i r  at each of these 
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points. We now present this information in objective space to the decision maker and seek to obtain relative 

preference for these points. This is accomplished by using the AHP and involves filling a comparison matrix 

whose principal eigenvector provides the priority vector showing the relative preference for these points. The 

priority vector 1rpr R  provides now an approximate measure of the vector   given through  

 1 0 0,..., rpr pr pr pr pr      

Where ( 0,..., )ipr i r is the priority of the i th iterate as derived by using the A HP technique. The 

gradient of the utility function with respect to x , ( )x x is evaluated through 

  1
( )x x C V      . 

3.2 Summary of the analytic hierarchy process (AHP) 

The application of AHP technique is for r  dimensional vector ( ) ( 1,..., )T
i iv x c x i r  value obtained at 

each of the ( 1)r  points 0 1{ , ,..., }rx x x , at the current iterate. 

 

 Create ( 1) ( 1)r r    comparison matrix for 1r   requirements with the aide of the decision 

maker to provide relative preferences  

             (Requirements here are the r - dimensional vector ( ) ( 1,..., )T
i iv x c x i r   value obtained    

              at each of the points 0 1{ , ,..., }rx x x , at the current iterate) 

            The creation of the matrix is as follows: 

For element (x , y) in the comparison matrix enter:  

 1- if x and y are of equal value (equal importance) 

 3- if x is slightly more preferred than y (weak importance of one over the other) 

             5- if x is strongly more preferred than y (strong importance) 

 7- if x is very strongly more preferred than y (demonstrated importance over the other) 

             9- if x is extremely more preferred than y (absolute importance) 

             2,4,6,8- intermediate values between 

              and for (y , x) enter the reciprocal. 

 Estimate the eigenvalues (eigenvector) as follows: 

E.g. “averaging over normalized columns” 

            Calculate the sum of each column 

            Divide each element in the matrix by the sum of its column 

            Calculate the sum of each row 

            Divide each row sum by the number of rows 

           This gives a value of relative priority for each requirement (priority vector 1rpr R ). 
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Remark. Notice that, if the utility function is available, we can use, at the current iterate, the normalized utility 

function values at the points 0 1{ , ,..., }rx x x as components of the priority vector pr .  

3.3 Algorithm for solving MOLP problem 

Step 1. initialization. Let  0   be a tolerance level. Let    0 0 0
1 ,..., ( )

T

nx x x Int X   

Let  0L  (Lipschitz’s constant),    0 0 0
11, ,...,

T

ny x x , 1(1,,.....,1)t ne R     and  

0k  (iteration counter)  

Step 2. Change.  Let   k kY diag y , 
T

k kd
B Y

A

 
   
 

 

Step 3. Projection. For 1,...,i r , find 1n
ip R  and 1m

iu R  which solve the linear system of 

equations 

                 

 
0

Tk k
i i i

k
i

p B u Y c

B p

 





                                   

where ip is the projection of k
iY c onto the null space of kB and iu is the dual variable. 

Step 4. Normalization. For 1,...,i r , define  i
i

i

p
q

p
  

Step 5. Line search step. For 1,...,i r , find i which satisfies the following inequalities: 

 
2

0

0

0
2 3 1

i

i i

T i i
i

i

e q

e q





 




 

  


 

A possible choice for ( 1,..., )i i r   which enforces these conditions is  0, 0.6i  . 

Step 6. New iterate. For 1,...,i r , find 

i i i

k
i i

i i

z e q

y Y z

x y

 





 

And consequently find 
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0
kx x ,  

1 1
1

1

1

....

.
....

.

....

r

r

n n
r

c c

C c c

c c

 
 
    
  
 

,   

1 1 1 1

1 1

.....

.

.

.....

T T k T T k
r r

T T k T T k
r r r r

c x c x c x c x

V

c x c x c x c x

  
 
    
    

  ,  

 1( ) ( ),..., ( ) ( )
Tk k

rx x x x         or  1 0 0,...,
T

rpr pr pr pr    , 

  1
( )k

x x C V       and 

0
( )

( )
k

y k
x

y
x




 
   

 

Step7. Projection. Find 1k np R  and 1k mu R  which solve the linear system of equations 

                 

  ( )

0

Tk k k k k
y

k k

p B u Y y

B p

  

  

Step 8. Termination test. If kp   then stop, the point kx is an optimal solution of problem (4)  

Step 9.  Updating. Choose an arbitrary (0 1]k   and let 

                                                1
k

k k k

k

p
y Y e

L p


 
  
  

       

                                                1 1k kx y   

Set 1k k   (increment the iteration counter)and return to step 2. 
Lemma 4. If the derivative of the utility function   satisfies the Lipschitz’s condition on the decision space, 

then 0k
k

p   

     Applying the lemma 3, the following could be written 
21 1 11

( ) ( ) ( ),
2

k k T k k k k k
yy y y y y L y y           

 
2

21 1
( ) ( ) ( )

2

k k k k
k k k T k k

y k k

Y p Y p
y y y L

L p L p
    

 
     
   

 

 
 

2 2

21
2

1
( ) ( )

2

k k k

k k k k

k k

p Y p
y y L

L p L p
      

 
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 
 

2 2

21
2

1
( ) ( )

2

k k k

k k k k

k k

p Y p
y y L

L p L p
      

 
 

Since 0 1 ( 0,..., )k
iy i n   then 

2 2k k kY p p  and  

 
 

2 2 2

21
2

1 1
( ) ( ) 1

2 2

k k k k

k k k k k k

k k kk

p Y p pL
y y L

L p L p L pL p
     

 
     
     

 

then  
2

1 1
( ) ( ) 1

2

k

k k k k

k

p
y y

L p
          

 

Choosing 0 1k   and the function   is upper bounded and monotonically, then  

1( ) ( ) 0k k
k

y y 
   and consequently 0k

k
p  , then 1 0k k

k
y y 

  , this 

means that the point ky  and consequently ( 1,..., )k k
j jx y j n  is an optimal solution in the decision 

space X . 

3.4 Convergence analysis  

The proposed algorithm produces a feasible point ky so that 0kp  . Suppose now that there is another 

feasible point *y so that *( ) ( )ky y  . As the function   is concave, so it can be concluded that 

*( )( ) 0T k k
y y y y   which implies that the vector * * kd y y   is an improvement direction. Besides, 

1
k k

k k k

k

Y p
y y

L p
  


 is feasible. Let * *kw y d   ; 0 1  . Now if *

k k

k

Y p
d

L p



(matrix 

A is full rank), then * 0
k k

k

Y p
Ad A

L p
 


  . It follows that * 0Ad  . So the point *w  is not feasible for 

any 0 1  . 

     For 1  ,it follows that * *y w . This conflicts with the fact that *y  is a feasible point. Then it must be 

*
k k

k

Y p
d

L p



which means clearly that 1 *ky w  . 

     For 1  ,it can be seen that 1 *k ky y w   and this means that ky  is an accumulation point, the 

condition of optimality of Karush-Kuhn-Tuker (KKT) in accumulation point ky are given as follows: 
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1 1,k m nu  
  R R : 

( ) 0

0 ( 0,..., )

TT
k k

y

k
i i

d
y u I

A

y i n

 



 
     

 
 

  

To demonstrate the verification of these conditions, from step 3 of the algorithm, we can write the following 

equation (at 0kp  ): 

( ) 0

TT
k k k k

y

d
Y y Y u

A


 
    

 
 

As the proposed algorithm creates a sequence of feasible points  
0,1,...

k

k
y


 with 0 ( 0,..., )k

jy j n  and 

0k  , then it can be concluded that: 

( ) 0

TT
k k

y

d
y u

A


 
    

 
 

As a result of taking 0 ( 0,..., )j j n   , the conditions of optimality of KKT in point ky are satisfied. 

Sequence  
0,1,...

k

k
y


converges to a solution that satisfies the conditions of optimality of KKT of problem. 

Consequently, this succession creates a sequence of points   
0,1,...

k

k
x


 converges to an optimal solution of 

problem in the decision space X . 

 

4 Conclusions 

An algorithm for solving multi-objective linear programming problems has been proposed in this paper. The 

method uses a single-objective linear variant in order to generate, at each iterate, interior search directions. 

New feasible points are found along these directions which will be later used for deriving best-approximation 

to the gradient of the implicitly-known utility function at the current iterate. Using this approximate gradient, a 

single feasible interior direction for the implicitly-utility function could be generated by projecting this 

approximate gradient onto the null space of the feasible region. It can be taken an interior step from the current 

iterate to the next one along this feasible direction. During the execution of the algorithm, a sequence of 

interior points will be generated. It has been proved that this sequence converges to an   optimal solution, 

where  is a predetermined error tolerance known a priori. For assuring the global convergence of the 

algorithm and to reach a global optimum, it is supposed that the utility function has to satisfy certain 

conditions as being continuously differentiable, concave and strictly increasing on the objective space and his 

derivative satisfies the Lipschitz’s condition. A simple formula is derived to approximate the gradient of the 

utility function based on the objective values and also on the utility function values, when it is known 

explicitly. In the absence of an explicit utility function, these values are unavailable and have to be 

approximated. The best way of approximating is through the using of the analytic hierarchy process ( )A HP  

technique. Further deeply research in this new area of multi-objective programming is needed and should be 
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concentrated on the ways of developing interactive methods for solving multi-objective nonlinear 

programming problems.   

 

5 Illustrative Example 

The demonstration of the proposed algorithm will be done through the following numerical example (Table 1, 

Fig.1). Consider the following MOLP problem: 

1 1 1

2 2 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

max

max

5 41

2 3 33

4 41

2 8

2

4 4

, 0

T

T

v c x x

v c x x

Subject to

x x

x x

x x

x x

x x

x x

x x

 

 

 
 
 
 
 

  


 

Adding the necessary slack and surplus variables, it can be found that:  

   1 210000000 , 01000000
T T

c c  ,  41 33 41 8 2 4
T

b   

1 5 1 0 0 0 0 0

2 3 0 1 0 0 0 0

4 1 0 0 1 0 0 0

1 2 0 0 0 1 0 0

1 1 0 0 0 0 1 0

4 1 0 0 0 0 0 1

A

 
 
 
 

  
 

 
   

 

For this example, an initial point is available through  0 2 1 34 26 32 8 1 11
T

x  . Assuming that the 

decision maker’s utility function is given through   1 2( ) 4 1U v v v   . This vector optimization 

problem has an optimal solution given through 

 * 7 6.3
T

x   and * * * *
1 2 1 27, 6.3, ( , ) 80.6v v U v v   . 
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Table 1 Solution results (current iterate). 

k  
1x  2x  

U  k  
1x  2x  

U  

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

2 

1.948 

2.310 

2.6 

3.187 

3.942 

4.968 

6.007 

6.708 

6.957 

7.247 

 

1 

1.317 

1.505 

1.97 

2.534 

3.364 

4.266 

5.021 

5.500 

5.809 

5.836 

 

12 

13.784 

15.808 

19.601 

25.4 

34.657 

47.221 

60.249 

69.596 

74.608 

76.885 

 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

 

6.924 

7.517 

6.906 

7.487 

6.940 

6.964 

6.981 

6.992 

7.001 

7.008 

6.138 

5.801 

6.230 

5.873 

6.250 

6.259 

6.265 

6.269 

6.272 

6.275 

77.971 

78.324 

78.853 

78.945 

79.314 

79.591 

79.775 

79.906 

80.003 

80.078 

 

 

 

Fig. 1 Utility values at current iterate. 
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