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Abstract 

An interactive interior point method for solving multiple-objective nonlinear programming problems has been 

proposed. The method uses a single-objective nonlinear variant based on both logarithmic barrier function and 

Newton’s method in order to generate, at each iterate, interior search directions. New feasible points are found 

along these directions which will be later used for deriving best-approximation to the gradient of the 

implicitly-known utility function at the current iterate. Using this approximate gradient, a single feasible 

interior direction for the implicitly-utility function could be found by solving a set of linear equations. It may 

be easily taken an interior step from the current iterate to the next one along this feasible direction. During the 

execution of the algorithm, a sequence of interior points will be generated. It has been proved that this 

sequence converges to an   optimal solution, where  is a predetermined error tolerance known a priori. A 

numerical multiobjective example is illustrated using this algorithm.   

 

Keywords multiobjective mathematical programming; multi-criteria optimization; interactive methods; 

interior point methods; barrier function; Newton's method; analytic hierarchy process. 

 

 

 

 

 

 

 

1 Introduction 

In this paper, an interior point algorithm for solving general nonlinear convex programming problems is 

presented. The algorithm generalizes a logarithmic barrier function proposed by (Renegar, 1988) for solving 

linear programming problems in polynomial time. This algorithm is based on both the analytical center 

concept and the Newton’s method. Recently, many important approaches to convex programming based on the 

idea of an analytic center are also proposed by (Mehrotra and Sun, 1990) for convex quadratic programming 

and the distinct works of (Hertog et all.,1991, 1992) for linear programming and for a class of smooth convex 

programming problems. Our work is mainly influenced by the works of (Renegar, 1988; Mehrotra and Sun, 
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1990; Hertog et al., 1991, 1992; Tlas, 2013, 2024) in their study of analytical center methods for linear and 

nonlinear programming.  

    In this proposed method, the line search is performed along the Newton’s direction which can be found by 

solving a system of linear equations in polynomial time, with respect to a certain strictly concave potential 

function in each iterate. It is proven that, after a line search the potential function value decreases with at least 

a certain constant. Using this result, it can be proved that the number of iterations required by the algorithm to 

converge to an  -optimal solution is at most ( )O m ln iterations where m denotes the number of constraints 

of problem and   is the predetermined error tolerance.  

    In addition, it is useful to generalize this interior point technique for solving a single nonlinear objective 

function to the domain of multiobjective nonlinear programming. Therefore, an interactive interior point 

algorithm is proposed to solve nonlinear multiple-objective programming problems based on both logarithmic 

barrier functions and approximate gradient. 

    The method uses the single-objective nonlinear variant proposed before in order to generate, at each iterate, 

interior search directions. New feasible points are found along these directions which will be later used for 

deriving best-approximation to the gradient of the implicitly-known utility function at the current iterate. Using 

this approximate gradient, a single feasible interior direction for the implicitly-utility function could be found 

by solving a set of linear equations by Gaussian elimination method. It may be easily taken an interior step 

from the current iterate to the next one along this feasible direction. During the execution of the algorithm, a 

sequence of interior points will be generated. It has been proved that this sequence converges to an 

  optimal solution, where  is a predetermined error tolerance known a priori.  

    The multiobjective nonlinear programming problem is ambiguous since, usually, the objective functions are 

conflicting and pursuing the optimum with respect to each objective. This will lead to different solutions. The 

ambiguity may be solved by introducing a utility function (or preference function) defined over the space of 

objectives. It is supposed that the decision-maker is capable of presenting his global preferences through this 

function, which is not necessarily being explicitly known but it is supposed to satisfy certain conditions as 

being continuously differentiable, concave and strictly increasing on the objective space in order to ensure the 

global convergence and to reach a global optimum. If the utility function is explicitly available, then it is easy 

to find the approximate gradient through the values of the utility function and the values of the objective 

functions at the current iteration. In the opposite case, when the utility function is implicitly known the 

approximate gradient could be found through the values of the objective functions and the analytic hierarchy 

process ( AHP ) (Zhang, 2019) technique at the current iteration. For more details about the AHP technique, 

the reader is referred to consult the following references: (Saaty, 1988; Arbel, 1994; Arbel and Oren, 1996).     

 

2 Statement of the Nonlinear Programming Problem (NLP) 

Consider the nonlinear programming problem (NLP) given in a standard form through: 

                           
( )

( ) 0 ( 1,..., )i

Maximize f x

Subject to g x i m 
                                                              

( )NLP                                                                             

Where nx R , n is the number of unknown (decision) variables and m is the number of constraints. The 

functions ( )f x and ( ) 0 ( 1,..., )ig x i m  are concave with continuous first and second-order derivatives. 
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It is supposed that, the interior of the feasible region  \ ( ) 0 ( 1,..., )n
iX x g x i m   R , denoted as 

Int (X) is non-empty, compact and convex in the real space nR . 

Wolfe’s formulation of the dual problem associated with the primal problem ( )NLP  is defined as follows: 

                    

1

1

( ) ( )

( ) ( ) 0

0 ( 1,..., )

m

i i
i

m

i i
i

i

Minimize f x u g x

Subject to f x u g x

u i m







   

 



                                               ( )DNLP  

Where the vectors x and u are primal and dual variables consequently. It is well-known that, if x is a feasible 

solution of the primal problem ( )NLP  and ( , )x u is a feasible solution of the dual problem ( )DNLP , then 

the following inequality: 

                             1

( ) ( ) ( )
m

i i
i

f x f x u g x


 
                                                                  (1)   

is correct. 

2.1 Logarithmic barrier function and its derivatives 

The following multiplicative barrier function is associated with the primal problem ( )NLP as follows: 

                      



 
m

i
i

kmkk kxgzxfx
1

,...)1,0()())(()(
 

Where, kz is a lower bound for the optimal value *z  and k is the number of iteration. This function is 

inspired from the work of Iri and Imai (1986) with some modifications. The function ( )k x is defined on the 

feasible region X, strictly concave, ( ) 0k x  on Int (X) and ( )k x tends to zero when x goes to the 

boundary of X. It is difficult to derive the first and second derivatives of ( )k x , for this reason it is interesting 

to see the first and second derivatives of ( ( ))kln x which have nice expressions, as follows:      

                       

1

( ) ( ( ))

( ) ( ) ( ( ) ) ( ( )) ( 0,1,...).

k k

m
k k

i
i

x ln x

x m k ln f x z ln g x k

 






    
    

The function ( )k x  is also defined only on the interior Int (X) of the feasible region X, twice-continuously 

differentiable, strictly concave and ( )k x tends to   when x goes to the boundary of X. Hence this 

logarithmic barrier function (potential function) achieves the maximal value in its domain (for fixed kz ) at a 
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unique point denoted kx . The necessary and sufficient Karush-Kuhn-Tucker (KKT) conditions for this 
maximal are: 

                    
1

( ) 0 ( 1,..., ),

( ) ( ) 0, 0 ( 1,..., ),

( )
( ) ( 1,..., ) ( 0,1,.....).

k
i

m
k k

i i i
i

k k
k

i i

g x i m

f x u g x u i m

f x z
g x u i m and k

m k



 

     


  



                           (2)               

 To begin with, we differentiate the function ( )k x to get: 

       
1

1
( ) ( ) ( ) ( ) ( 0,1,...).

( ) ( )

m
k k

ik
i i

m k
G x x f x g x k

f x z g x





      

    

The vector ( )kG x will simply be called the gradient of ( )k x . 

Further differentiations will yield: 

,...).1,0())()(
))((

1
)(

)(

1
(

)()(
))((

)(
)(

)()(

1
2

2

2
22
















kxgxg
xg

xg
xg

xfxf
zxf

km
xf

zxf

km
xxH

m

i
i

T
i

i
i

i

T
kk

kk 

 

The matrix ( )kH x will simply be called the Hessian matrix of ( )k x . 

Now, we will describe the basic algorithm for solving the problem ( )NLP . 

The following algorithm is designed to work in the relative interior of the feasible set X and solving the 

nonlinear programming problem ( )NLP . 

2.2 Algorithm for solving NLP  

Step 1: Initialization: Let: k = 0 the iteration counter, 0  the tolerance level, 0 ( )x Int X the starting 

interior point, and Rz 0  the lower bound where .)( 00 zxf       

Step 2: Feasible direction: Find the unique solution of the following system of linear equations:  

                              ( ) ( )k k k k kH x y x G x   . Let ky denote the solution of this system. 

This problem is purely linear and can be solved in polynomial time by Gaussian elimination requiring 

computations of order 2( )O nm  arithmetic operations.  

Step 3: Length of step: Find the scalar:  

                                       
arg max ( ( ))

0 1

k k k k kx y x  


  
 

 

Step 4: Updating: Define the new point: 1 ( ).k k k k kx x y x     
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Step 5: Termination test: If 1k kx x    , then stop, the point kx is an optimal solution of NLP  else 

define a new lower bound as follows: 1 1( ( ) )k k k kz z f x z    , where 10  . Set 

1k k  (increment the iteration counter) and return again to step 2.  

2.3 The easily demonstrable properties 

1. The direction k ky x , determined in Step 2 of the algorithm is a strict assent direction of 

)(xk at ( )kx Int X . 

From Step 2 of the algorithm, it can be seen that:  ( ) ( )k k k k k kH x y x G x   .  

Using the strict concavity of )(xk , it follows that, 

   ( ) 0
Tk k k k k ky x H x y x   so    ( ) 0

Tk k k kG x y x  . 

2. The point  1k k k k kx x y x     is feasible.  

Being the feasible set X  convex in nR , the proof can be completely derived from Steps 3 and 4 of the 
algorithm. 

 

Note. In practice it would probably be wise to choose 0 1  initially large and then reduce it in later 

iterations if Newton’s method begins having trouble in approximating centers, where the center is the point 

maximizing the function )(xk . 

2.4 The reduction of the potential function value 

It is known that: 

1

( ) ( ) ( ( ) ) ( ( )) ( 0,1,...),
m

k k
i

i

x m k ln f x z ln g x k


      

1 1

1

( ) ( 1) ( ( ) ) ( ( )) ( 0,1,...)
m

k k
i

i

x m k ln f x z ln g x k  



      ,  

1 1( ( ) )k k k kz z f x z    , 10  and 

1 1
1 ( ( ) )
( ) ( )

( ( ) )

k m k
k k

k m k

f x z
x x ln

f x z
 

  




 
    

 

Now when 1kx x  , then: 

 
1 1

1 1 1 1 1
1

( )
( ) ( ) ( )

( )

m kk k
k k k k k k

k k

f x z
x x ln f x z

f x z
 

 
    



 
    

. 

But  1 1 1( ) (1 ) ( )k k k kf x z f x z      , then: 
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 1 1 1 1 1( ) ( ) (1 ) ( ( ) )k k k k m k k kx x ln f x z           . 

Let *z denote the value of the objective function ( )f x at the optimal solution of NLP , then: 

1 1 1 1 * 1 * 0( ) ( ) ((1 ) ( )) ((1 ) ( ))k k k k m k k m kx x ln z z ln z z                . 

Choosing * 0 (1 ) mz z     , where (0 1)  , then we can see 1 1 1 1( ) ( ) (1 )k k k k kx x ln        , 

this means that the function )(xk goes to  when k goes to . 

2.5 The available solution after ( )O m ln iterations can be converted to an  -optimal solution  

Let *z denote the value of the objective function ( )f x at the optimal solution of NLP  and let kz be the 

value of the objective value at the point kx , then: 

* 1 * 1 1

* * *

( ( ) ) ( )
1

k k k k k k

k k k

z z z z f x z f x z

z z z z z z

 
      
  

  
  (0 1)                  (3)                                      

Using inequality (1), it can be seen that: 

 * 1 1

1

( ) ( )
m

k k
i i

i

z f x u g x 



     * 1 1

1

( ) ( )
m

k k k k
i i

i

z z f x z u g x 



     

Using (2), it follows that: 

* 1 1( ) ( ( ) )k k k k km
z z f x z f x z

m k
     


 * 1(1 )( ( ) )k k km

z z f x z
m k

   


. 

Substituting of the last inequality into (3) gives: 

* 1
1

*

1
1 (1 ) 1 1

2 2

k

k

z z m m k

z z m k m k m k
  


 

      
   

  

* 1 *

* * 1

* 1 * 0

1
(1 )( )

2
1

(1 )( )
2 1

.

.

.

1
(1 )( )

2

k k

k k

z z z z
m k

z z z z
m k

z z z z
m











     
     






   


  

* 1 * 0 * 0

0 0

1 1
(1 )( ) (1 )( )

2 2 1

k k
k

i i

z z z z z z
m i m k

 

 

      
    . 

As: * 1 * 1( )k kz f x z z    , so: 
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)()
12

1()( 0*11* zz
km

xfz kk 


  
, 

* 1 1 * 0 * 0( ( )) ((1 ) ( )) ( 1) (1 ) ( )
2 1 2 1

k kln z f x ln z z k ln ln z z
m k m k

          
   

. 

Since (1 ) ,0 1ln        , then: 

* 1 * 0( ( )) ( 1) ( )
2 1

kln z f x k ln z z
m k

 
    

 
. 

The aim is to find the number of iterations K so that: * 1( ( ))kln z f x ln   then: 

* 0( 1) ( )
2 1

k ln z z ln
m k

 
   

 


* 0
( 1)

2 1
k ln

m k z z

         
  

* 01 2 1

1

m k z z
ln

k 
   

     


* 01 2
(1 )

1

m z z
ln

k 
 

      


* 02
(1 )

1

m z z
ln

k



 

      

  

* 02
1

1

m z z
ln

k



 

      


* 0 * 02
1

1

m z z z z
ln ln

k
 

 
    

           
  

* 0

1 1

2

k
ln

m z z




      


* 0

2
1

m
k ln

z z




      


* 0

2
1

m
k ln

z z




      
. 

From this inequality, it can be seen that the number of iterations K for an   optimal solution is at 

most:
* 0

2
1 1

m
K ln

z z




         
 where u   denotes the integer part of the real numberu . 

Taking * 0 1
z z


  , the number of iterations K can be described as follows ( )K O m ln . 

2.6 Convergence analysis 

From the algorithm, it is found that 1k kx x    , which implies 

( ) 0k kG x  
1

1
( ) ( ) 0

( ) ( )

m
k k

ik k k
i i

m k
f x g x

f x z g x


   

  

1

( ) 1
( ) ( ) 0

( )

k k m
k k

ik
i i

f x z
f x g x

m k g x


   

  . 

Taking
( ) 1

( 1,..., )
( )

k k

i k
i

f x z
u i m

m k g x


 


, it can be found: 
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1

( ) ( ) 0, 0 ( 1,..., ),

( ) 0 ( 1,..., )

( )
( ) ( 1,..., ).

m
k k

i i i
i

k
i

k k
k

i i

f x u g x u i m

g x i m and

f x z
g x u i m

m k



     

 


 




 

This means that the accumulation point kx satisfies the KKT conditions. 

As the proposed algorithm creates a sequence of interior points  
0,1,...

k

k
x


contained in ( )Int X and 

converges to a solution satisfying the KKT conditions and under the assumptions used in this paper then, by 

the general theory of convergence (Minoux, 1983), it can be concluded that the accumulation point kx which 
is found by the algorithm is an  optimal solution of NLP  in X .  

 

3 Statement of the Multiobjective Nonlinear Programming Problem (MONLP) 

A multiobjective nonlinear programming problem (MONLP) is generally described through the standard 

formulation:  

                        

1 1

2 2

( )

( )

.

.

( )

( ) 0 ( 1,..., )
r r

i

maximize v v x

maximize v v x

maximize v v x

subject to g x i m





 

                                                                            

(MONLP) 

Where the functions: ( ) ( 1,..., )iv x i r and ( ) ( 1,..., )ig x i m are concave with continuous first and 

second-order derivatives. The first derivatives of ( ) ( 1,..., )iv x i r satisfy Lipchitz's condition in x on X , 

where the feasible set  / ( ) 0 ( 1,..., )n
iX x g x i m   R  is compact and convex in the real 

space nR . The interior of the feasible region (denoted ( )Int X ) is non-empty and bounded, n is the number 

of unknown or decision variables, m is the number of constraints such that ( m n ), and r  is the number of 

objective functions.    

In multiobjective programming, it is supposed that, the decision-maker has to be capable of presenting his 

global preferences through a utility function 1( ) ( ,..., )rU v U v v . This function is not necessarily being 

explicitly known but it is supposed to satisfy certain conditions (continuously differentiable, concave, and 

strictly increasing in v on the objective space ( )V X . ( )V X  is the image of the feasible set X (decision 

space) by the objective functions ( ) ( 1,..., )iv x i r . It is also assumed that the first derivative 

of 1( ) ( ,..., )rU v U v v  satisfies Lipchitz's condition in v on ( )V X .   
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Lemma 1: If the utility function 1( ) ( ,..., )rU v U v v  is concave and strictly increasing in v on the 

objective space ( )V X , then the function 1( ) ( ( ),..., ( ))rx U v x v x   is concave in x on the decision 

space X . 

Consider the following relation: 

 

  
  Where UoV  and the gradient of the utility function with respect of x  is given as 

follows
1

( )
( ) ( )

r

x x j
j j

U v
x v x

v





  

 . 

Since 1( ) ( ,..., )rU v U v v  is strictly increasing in v on ( )V X , then 0 ( 1,..., )
j

j r
v


 


U

. The functions 

( ) ( 1,..., )iv x i r are concaves on X . Therefore:  

* * *, ; ( ) ( ) ( )( ) ( 1,..., )T
j j x jx x X v x v x v x x x j r      , then: 

* *

1 1

( ( ) ( )) ( )( )
r r

T
j j x j

j jj j

U U
v x v x v x x x

v v 

 
   

   . 

Using the last inequality, it can be found that: 

* * *

1 1

*

( ) ( )
( )( ) ( ) ( ) ( ( ) ( ))

( ( ))( ( ) ( ))

r r
T T
x x j j j

j jj j

T
v

U v U v
x x x v x x x v x v x

v v

U v x v x v x


 

  
          

  

 
 

As the function U is concave on ( )V X , then:  

* * * *( )( ) ( ( ))( ( ) ( )) ( ( )) ( ( )) ( ) ( )T T
x vx x x U v x v x v x U v x U v x x x            

So that * *( ) ( ) ( )( )T
xx x x x x      , which means that the function ( )x is concave on X . 

 

( )r nV X X R R

R
U 

V
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Lemma 2: If the derivative of the utility function 1( ) ( ,..., )rU v U v v is strictly increasing and satisfies 

Lipchitz's condition on the objective space ( )V X , then the derivative of the function 

1( ) ( ( ),..., ( ))rx U v x v x  satisfies Lipchitz's condition on the decision space X . 

It is easy to see that: 

2 1 2 1

1 1

2 1

1

( ) ( )
( ) ( ) ( ) ( )

( )
( ( ) ( ))

r r

x x x j x j
j jj j

r

x j x j
j j

U v U v
x x v x v x

v v

U v
v x v x

v

 
 



 
     

 


  



 


 

The derivatives of the functions ( 1,..., )jv j r satisfy Lipchitz's condition on X , it can be seen that, there 

is 0L  such that: 

2 1 2 1( ) ( )x j x jv x v x L x x    . 

The function 1( ) ( ,..., )rU v U v v is strictly increasing 0 ( 1,..., )
j

j r
v


 


U

, and then it can be 

found 2 1 2 1 2 1

1 1

( ) ( )
( ( ) ( )) '

r r

x j x j
j jj j

U v U v
v x v x L x x L x x

v v 

 
     

    . So  

2 1 2 1( ) ( ) 'x xx x L x x     , then the derivative of the function ( )x satisfies the condition of 

Lipchitz on the decision space X . 

3.1 Approximate gradient  

The multiobjective nonlinear programming problem (MONLP) is ambiguous since the objectives usually are 

conflicting and pursuing the optimum with respect to each objective. This leads to different solutions. The 

ambiguity may be solved by introducing a utility function 1( ) ( ,..., )rU v U v v , defined over the space of 

objectives ( )V X  and presented by the decision-maker. This function has to satisfy certain conditions as 

being continuously differentiable, concave, and strictly increasing on the objective space and its derivative 

satisfies Lipchitz's condition in order to ensure the global convergence and to reach a global optimum.  

If 1( ) ( ,..., )rU v U v v is explicitly available then, we have to find a way to approximate the gradient of the 

utility function based on the values of the utility function at the current iteration. 

The gradient of the utility function in the decision space X  could be given as follows: 

1
1

( ) ( )
( ) ( ) .... ( )x x x r

r

U v U v
x v x v x

v v
  

     
 
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1

1 1

1

1

( ) ( )

. .
( ) ( )

. ... .

. .

( ) ( )

r

r

r

n n

v x v x

x x

U v U v

v v

v x v x

x x

    
       
   

             
   
    

       

=

1

1 1

1

( ) ( )
...

.

. ( )

.

( ) ( )
...

r

v

r

n n

v x v x

x x

U v

v x v x

x x

      
 
  
 
 
      

. 

In matrix form, the gradient can be written as: ( ) ( )x vx C U v   . 

Where
1

( ) ( )
( ) ,....,

T

v
r

U v U v
U v

v v

  
     

,
1

( ) ( )
,....,

T

x
n

x x

x x

 
  

     
and 

1

1 1

1

( ) ( )
...

.

.

.

( ) ( )
...

r

r

n n

v x v x

x x

C

v x v x

x x

      
 
   
 
 
      

. 

Therefore, to find the approximate gradient ( )x x in the decision space we have to evaluate the gradient of 

the utility function ( )vU v in the objective space. Since the derivatives objectives matrix C is n r matrix, 

considering each of the r  objective functions by themselves, results in stepping from the current iteration, 0x  

along a specific step direction to r  end points ( 1,..., )ix i r  with their respective values for the 

r objective functions. The change in the utility function in decision space ( )x in stepping from the current 

iteration 0x  to the set of r  new iterations can be approximated through a first order Taylor’s expansion as 
follows: 

1 0 1 0

0 0

( ) ( ) ( ) ( )

.

.

( ) ( ) ( ) ( )

T
x

r T r
x

x x x x x

x x x x x

  

  

   

   

              Or             

1 0 1 0

0 0

( ) ( ) ( ) ( )

.

.

( ) ( ) ( ) ( )

T T
v

r T T r
v

x x U v C x x

x x U v C x x

 

 

    

    

 

These equations can be rewritten as follows: 
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1

1 1

1 0 1 0

1

1

1 1

0 0

1

( ) ( )
...

.

( ) ( ) ( ) . ( )

.

( ) ( )
...

.

.

( ) ( )
...

.

( ) ( ) ( ) . ( )

.

( ) ( )
...

r

T
v

r

n n

r

r T r
v

r

n n

v x v x

x x

x x U v x x

v x v x

x x

v x v x

x x

x x U v x x

v x v x

x x

 

 

      
 
      
 
 
      

      
 
      
 
 
      

    

In a matrix form, we can write:  

    

1 0
1

1 0

1 0

0
1

0

0

( ) ( )

.
( ) ( ) ( )

.

( ) ( )

.

.

( ) ( )

.
( ) ( ) ( )

.

( ) ( )

T
x

T
v

T
x r

T r
x

r T
v

T r
x r

v x x x

x x U v

v x x x

v x x x

x x U v

v x x x

 

 

   
 
     
     

   
 
     
     
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1 0
1 1

1 0

1 0

0
1 1

0

0

( ) ( )

.
( ) ( ) ( )

.

( ) ( )

.

.

( ) ( )

.
( ) ( ) ( )

.

( ) ( )

T
v

r r

r

r T
v

r
r r

v x v x

x x U v

v x v x

v x v x

x x U v

v x v x

 

 

 
 
     
   

 
 
     
   

Or 

1 0 1 0
1 1

0 0
1 1

( ) ( ),..., ( ) ( )

.
( )

.

( ) ( ),..., ( ) ( )

r r

v

r r
r r

v x v x v x v x

U v

v x v x v x v x



  
 
    
    

 

( )vV U v       1
( )vU v V     . 

But we have ( ) ( )x vx C U v   , then   1
( )x x C V      . 

From this relation, it could be concluded that, the Taylor’s series approximation for the gradient of the utility 

function ( )x in the decision space involves the value of the utility function at the initial point 0x  and the 

value at the r  new iterations.  

In the absence of an explicit utility function, these values are unavailable and have to be approximated. One 

way of assessment of relative preferences for the ( 1)r  value vectors is through the analytic hierarchy 

process ( )AHP (Saaty, 1988; Arbel, 1994; Arbel and Oren, 1996).     

To obtain an approximate measure for the utility function at points of interest we proceed as follows: 

While the value of the utility function at the ( 1)r  points 0 1{ , ,..., }rx x x is unknown, we can evaluate the 

complete r  dimensional vector of objective functions value, ( ) ( 1,..., )iv x i r at each of these points. 

This information is now presented, in objective space, to the decision maker and seeks to obtain relative 

preference for these points. This is accomplished by using AHP and involves filling a comparison matrix 

whose principal eigenvector provides the priority vector showing the relative preference for these points. The 

priority vector 1rpr R  provides an approximate measure of the vector   given through: 

 1 0 0,..., rpr pr pr pr pr      
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Where ( 0,..., )ipr i r is the priority of the i th iteration as derived by using the method of AHP , the 

gradient of the utility function with respect to x , ( )x x is evaluated through: 

  1
( )x x C V      . 

3.2 Summary of the analytic hierarchy process (AHP) 

The application of AHP technique is for r  dimensional vector ( ) ( 1,..., )iv x i r value obtained at each of 

the ( 1)r  points 0 1{ , ,..., }rx x x , at the current iteration. 

 Create ( 1) ( 1)r r    comparison matrix for 1r   requirements with the aid of the decision maker 

to provide relative preferences  

             (Requirements here are the r - dimensional vector ( ) ( 1,..., )iv x i r  value obtained    

              at each of the points 0 1{ , ,..., }rx x x , at the current iteration) 

            The creation of the matrix is as follows: 

For element (x , y) in the comparison matrix enter:  

 1- If x and y are of equal value (equal importance) 

 3- If x is slightly more preferred than y (weak importance of one over the other) 

             5- If x is strongly more preferred than y (strong importance) 

 7- If x is very strongly more preferred than y (demonstrated importance over the other) 

             9- If x is extremely more preferred than y (absolute importance) 

             2, 4, 6, 8- intermediate values between 

              And for (y, x) enter the reciprocal. 

 Estimate the eigenvalues (eigenvector) as follows: 

E.g. “averaging over normalized columns” 

             Calculate the sum of each column 

             Divide each element in the matrix by the sum of its column 

             Calculate the sum of each row 

             Divide each row sum by the number of rows 

           This gives a value of relative priority for each requirement (priority vector 1rpr R ). 

Remark: If the utility function is available, we could use, at the current iteration, the normalized utility 

function values at the points 0 1{ , ,..., }rx x x as components of the priority vector pr .  

3.3 Logarithmic barrier function and its derivatives concerning the problem (MONLP) 

The following logarithmic barrier function is associated with the primal problem MONLP (Tlas and Abdul 

Ghani, 2005) as follows:: 

                      
1

( ) ( ) ( ( )( ) ) ( ( )) ( 0,1,...)
m

k T k k k
x i

i

x m k ln x x x z ln g x k 


        
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Where, kz is a real negative number and k is the number of iteration. The function ( )k x is defined on the 

interior of the feasible region X, twice-continuously differentiable, strictly concave and ( )k x tends to   

when x goes to the boundary of X.  

To begin with, we differentiate the function ( )k x to get ( )k x  the gradient of ( )k x : 

       
1

1
( ) ( ) ( ) ( 0,1,...).

( )( ) ( )

m
k k

iT k k k
i i

m k
x x g x k

x x x z g x
 

 


     

      

Further differentiations will yield to get 2 ( )k x  the Hessian matrix of ( )k x : 

2
2

2
2

1

( ) ( ) ( )
( ( )( ) )

1 1
( ( ) ( ) ( )) ( 0,1,...).

( ) ( ( ))

k k T k
T k k k

m
T

i i i
i i i

m k
x x x

x x x z

g x g x g x k
g x g x

  





     

  

    
 

We associate also the following logarithmic barrier functions with the objective functions ( ) ( 1,..., )iv x i r : 

1

( ) ( ) ( ( ) ) ( ( )) ( 1,..., ), ( 0,1,...).i

m
k k

i i i
i

x m k ln v x ln g x i r k 


       

Where ( 1,..., )k
i i r   are the lower bounds for the optimal values *

i related to the objective 

functions ( ) ( 1,..., )iv x i r . 

The gradient vectors and the Hessian matrixes of ( ) ( 1,..., )i
k x i r  are given as: 

1

1
( ) ( ) ( ) ( ) ( 1,..., ), ( 0,1,...).

( ) ( )

m
k k
i i i ik

ii i i

m k
G x x v x g x i r k

v x g x


 


       

   

2 2
2

2
2

1

( ) ( ) ( ) ( ) ( )
( ) ( ( ) )

1 1
( ( ) ( ) ( )) ( 1,..., ), ( 0,1,...).

( ) ( ( ))

k k T
i i i i ik k

i i i i

m
T

i i i
i i i

m k m k
H x x v x v x v x

v x v x

g x g x g x i r k
g x g x


 



 
       

 

     
 

Now, we will describe the basic algorithm for solving MONLP. 

The following algorithm is designed to work in the relative interior of the feasible set X and solving the 

muliobjective nonlinear programming problem (MONLP). 

3.4 Algorithm for solving MONLP  
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Step 1: Initialization.  Let: k=0 the iteration counter, 0  the tolerance level, 0 ( )x Int X the starting 

interior point 0 0z  , 0
i

r R lower bounds where 0 0( ) ( 1,..., )iiv x i r  and 0L  (Lipchitz's 

constant).  

 Step 2: Feasible directions. For 1,...,i r , find the unique solution k
iy  of the following system of linear 

equations:     

 ( ) ( )k k k k k
i iH x y x G x   . 

This problem is purely linear and can be solved in polynomial time by Gaussian elimination requiring 

computations of order 2( )O nm  arithmetic operations.  

Step 3: Length of steps. For 1,...,i r , find the scalar:  

                                       
arg max ( ( ))

0 1

i
k k k k k
i ix y x  



  

 
 

Step 4: Updating. For 1,...,i r , define the new point: ( )k k k k
i i ix x y x   , and consequently find: 

0
kx x ,

1

1 1

1

( ) ( )
...

.

.

.

( ) ( )
...

r

r

n n

v x v x

x x

C

v x v x

x x

      
 
   
 
 
      

,

1 1 1 0 1 0

1 1 0 0

( ) ( ),..., ( ) ( )

.

.

( ) ( ),..., ( ) ( )

r r

r r r r

v x v x v x v x

V

v x v x v x v x

  
 
  
 
    

,

 1 0 0( ) ( ),..., ( ) ( )
T

rx x x x         or  1 0 0,...,
T

rpr pr pr pr    and 

  1
( )k

x x C V       . 

Step 5: Feasible direction. Find k ny R which solve the linear system of equations:  

 2 ( ) ( )k k k k kx y x x      

Step 6: Length of step. Find the scalar:  

         1 arg max ( ( ))

0 1

k k k kx y x  


  
 

, 2 2

( )( )T k k k
x

k k

x y x

L y x

  



 and   1 2min ,k    

Define the new point 1 ( )k k k k kx x y x     
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Step 7: Termination test. If 1k kx x    , then stop, the point kx is an optimal solution of MONLP else 

define new lower bounds as follows: 1 1( ( ) ) ( 1,..., )k k k k
i i i i iv x i r          , where 

0 1 ( 1,..., )i i r   and 1 (1 )k kz z   , 0 1  . Set 1k k  (increment the iteration counter) 

and return again to step 2.  

3.5 Convergence analysis 

The direction k ky x , determined in Step 5 of the algorithm is a strict assent direction of ( )k x at 

kx because, from Step 5 of the algorithm, it can be seen that:  2 ( ) ( )k k k k kx y x x     .  

Using the strict concavity of ( )k x , it follows that:    2 ( ) 0
Tk k k ky x x y x     ,so 

   ( ) 0
Tk k k kx y x   . 

The point  1k k k k kx x y x     is feasible because the feasible set X  is convex in nR .  

Now, from the mean value theorem, it can be seen that: 

1 1( ) ( ) ( )( )k k T k kx x x x        , where 1,k kx x     and 1 ( )k k k k kx x y x     

 1 1 1( ) ( ) ( ) ( ) ( ) ( )( )k k T T k k k T k k kx x x x x x x x               

1 1 1( ) ( ) ( ) ( ) ( )( )k k T T k k k T k k kx x x x x x x x               

Using the following condition of Lipchitz ( ) ( )T T k kx L x       , it can be found: 

1 1 1( ) ( ) ( )( )k k k k k T k k kx x L x x x x x x            

21 1 1( ) ( ) ( )( )k k k k T k k kx x L x x x x x          

21 2( ) ( ) ( )( )k k k k T k k kx x L y x x y x           

21 2( ) ( ) ( )( )k k T k k k k kx x x y x L y x           . 

Choosing 2

( )( )
0

T k k k
x

k k

x y x

L y x

  
 


 , then it can be seen that: 1( ) ( )k kx x   , this means that the 

value of the function ( )x  increase in each iteration. 

From the algorithm it is found that 1k kx x    , which implies 
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1
1

1
( ) ( ) 0

( )( ) ( )

m
k k

iT k k k k k
i i

m k
x g x

x x x z g x


 



   

    

1

1

( )( ) 1
( ) ( ) 0

( )

T k k k k m
k k

ik
i i

x x x z
x g x

m k g x






  
   

  . 

Taking
1( )( ) 1

( 1,..., )
( )

T k k k k

i k
i

x x x z
u i m

m k g x

   
 


, we find: 

1

1

( ) ( ) 0, 0 ( 1,..., ),

( ) 0 ( 1,..., ),

( )( )
( ) ( 1,..., ).

m
k k

i i i
i

k
i

T k k k k
k

i i

x u g x u i m

g x i m

x x x z
g x u i m

m k









     

 

  
 




 

Where kz goes to zero when k goes to the infinity, this means that the accumulation point kx satisfies the 
KKT conditions. 

As the proposed algorithm creates a sequence of interior points  
0,1,...

k

k
x


contained in ( )Int X and 

converges to a solution satisfying the KKT conditions, under the assumptions used in this paper, then by the 

general theory of convergence, it can be concluded that the accumulation point kx which is found by the 
algorithm is an   optimal solution of the MONLP in X .  

 

4 Conclusions 

An algorithm for solving multiobjective nonlinear programming problems has been proposed. The algorithm is 

based on a single-objective nonlinear variant of interior point method using logarithmic barrier function in 

order to generate interior search directions. New feasible points are found along these directions which will be 

later used for deriving best-approximation to the gradient of the implicitly-known utility function at the current 

iterate. Using this approximate gradient, a single feasible interior direction for the implicitly-utility function 

could be found by solving a set of linear equations. It may be easily taken an interior step from the current 

iterate to the next one along this feasible direction. During the execution of the algorithm, a sequence of 

interior points will be generated. It has been proved that this sequence converges to an   optimal solution, 

where  is a predetermined error tolerance known a priori.  

    For assuring the global convergence of the algorithm and to reach a global optimum, it is supposed that the 

utility function has to satisfy certain conditions as being continuously differentiable, concave and strictly 

increasing on the objective space and its derivative satisfies Lipchitz's condition. A simple formula is derived 

to approximate the gradient of the utility function based on the objective values and also on the utility function 

values, when it is known explicitly. In the absence of an explicit utility function, these values are unavailable 

and have to be approximated. The best way of approximating is through the use of the analytic hierarchy 

process ( )AHP  technique. Further deeply research in this new area of multiobjective programming is needed 

and should be concentrated on the ways of developing more rapid and robust interactive methods for solving 

multi-objective nonlinear programming problems.   
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5 Illustrative Examples 

The demonstration of the proposed algorithm will be done through the following numerical example. Consider 

the following MONLP problem: 

1 1 1

2 2 2

1 1 2

2 1

3 2

4 1

5 2

max ( )

max ( )

:

( ) 3 2 6 0

( ) 2 0

( ) 2 0

( ) 0

( ) 0

v v x x

v v x x

Subject to

g x x x

g x x

g x x

g x x

g x x

 
 

    
   
   
 
 

 

For this example, an initial point is available through  0 0.1 0.1
T

x  , Lipchitz's constant 2L  , 0.2   

and 0 25z   , assuming that the decision maker’s utility function is given through 

2 2
1 1 2 2( ) 5 8 2U v v v v v    . This vector optimization problem has an optimal solution given 

through  * 1 1.5
T

x  , * * * *
1 2 1 21, 1.5, ( , ) 11.5v v U v v   . 

 

Solution results (Current iteration) 

k  
1x  2x  U  k  

1x  2x  U  

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

 

0.1 
0.1995 
0.4020 
0.7802 
0.6710 
0.9169 
0.6958 
0.9783 
0.7504 
0.9851 
0.7901 
0.9834 
0.8209 
0.9782 
0.8437 

 

0.1 
0.2047 
0.4417 
1.0360 
1.6930 
1.3047 
1.7091 
1.2827 
1.6597 
1.3135 
1.6286 
1.3435 
1.6022 
1.3694 
1.5818 

 

1.27 
2.5114 
4.9922 
9.4337 

10.7164 
10.7768 
10.8257 
10.9055 
10.9574 
11.0124 
11.0504 
11.0878 
11.1142 
11.1389 
11.1570 

 

15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
 

0.9720 
0.8605 
0.9652 
0.8723 
0.9574 
0.8785 
0.9473 
0.8727 
0.9313 
0.9110 
0.9703 
0.9609 
1.0091 
0.9909 
0.9974 

 

1.3910 
1.5662 
1.4094 
1.5555 
1.4266 
1.5518 
1.4453 
1.5683 
1.4725 
1.5876 
1.4893 
1.5516 
1.4776 
1.5046 
1.4949 

 

11.1734 
11.1859 
11.1968 
11.2054 
11.2127 
11.2189 
11.2236 
11.2292 
11.2326 
11.3850 
11.3885 
11.4791 
11.4815 
11.4818 
11.4819 
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