probFunCal2
A Web-Based Calculator For Calculating Probability Distribution Functions As Binomial, Poisson, Exponential, Gamma, Beta, Uniform, Weibull, Lognormal, Cauchy, Geometric, And Negative Binomial Distributions
By W. J. Zhang
The user manual guide and suggested citation of this page:
Zhang W. J. 2026. probFunCal2: A web-based calculator for calculating probability distribution functions as binomial, Poisson, exponential, gamma, beta, uniform, Weibull, lognormal, Cauchy, geometric, and negative binomial distributions. Selforganizology, 13(3-4): 26-65
Also, click here to download the corresponding offline calculator.
Binomial Distribution
Number of trials (n ):
Number of successes (k ):
Probability of success (p ):
Cumulative probability F (k ):
Probability (p ):
Number of trials (n ):
Probability of success (prob ):
Quantile (k ):
Back to Top
Poisson Distribution
Number of events (k ):
Rate parameter (λ ):
Probability mass f (k ):
Number of events (k ):
Rate parameter (λ ):
Cumulative probability F (k ):
Probability (p ):
Rate parameter (λ ):
Quantile (k ):
Back to Top
Exponential Distribution
Random variable (x ):
Rate parameter (λ ):
Probability density f (x ):
Random variable (x ):
Rate parameter (λ ):
Cumulative probability F (x ):
Probability (p ):
Rate parameter (λ ):
Quantile (x ):
Back to Top
Gamma Distribution
Random variable (x ):
Shape parameter (α ):
Scale parameter (β ):
Probability density f (x ):
Random variable (x ):
Shape parameter (α ):
Scale parameter (β ):
Cumulative probability F (x ):
Probability (p ):
Shape parameter (α ):
Scale parameter (β ):
Quantile (x ):
Back to Top
Beta Distribution
Random variable (x ):
Shape parameter α :
Shape parameter β :
Probability density f (x ):
Random variable (x ):
Shape parameter α :
Shape parameter β :
Cumulative probability F (x ):
Probability (p ):
Shape parameter α :
Shape parameter β :
Quantile (x ):
Back to Top
Uniform Distribution
Random variable (x ):
Lower bound (a ):
Upper bound (b ):
Probability density f (x ):
Random variable (x ):
Lower bound (a ):
Upper bound (b ):
Cumulative probability F (x ):
Probability (p ):
Lower bound (a ):
Upper bound (b ):
Quantile (x ):
Back to Top
Weibull Distribution
Random variable (x ):
Shape parameter (k ):
Scale parameter (λ ):
Probability density f (x ):
Random variable (x ):
Shape parameter (k ):
Scale parameter (λ ):
Cumulative probability F (x ):
Probability (p ):
Shape parameter (k ):
Scale parameter (λ ):
Quantile (x ):
Back to Top
Lognormal Distribution
Random variable (x ):
Location parameter (μ ):
Scale parameter (σ ):
Probability density f (x ):
Random variable (x ):
Location parameter (μ ):
Scale parameter (σ ):
Cumulative probability F (x ):
Probability (p ):
Location parameter (μ ):
Scale parameter (σ ):
Quantile (x ):
Back to Top
Cauchy Distribution
Random variable (x ):
Location parameter (x₀ ):
Scale parameter (γ ):
Probability density f (x ):
Random variable (x ):
Location parameter (x₀ ):
Scale parameter (γ ):
Cumulative probability F (x ):
Probability (p ):
Location parameter (x₀ ):
Scale parameter (γ ):
Quantile (x ):
Back to Top
Geometric Distribution
Number of failures (k ):
Probability of success (p ):
Probability mass f (k ):
Number of failures (k ):
Probability of success (p ):
Cumulative probability F (k ):
Probability (p ):
Probability of success (prob ):
Quantile (k ):
Back to Top
Negative Binomial Distribution
Number of failures (k ):
Number of successes (r ):
Probability of success (p ):
Probability mass f (k ):
Number of failures (k ):
Number of successes (r ):
Probability of success (p ):
Cumulative probability F (k ):
Probability (p ):
Number of successes (r ):
Probability of success (prob ):
Quantile (k ):
Back to Top
User manual guide:
Zhang W. J. 2026. probFunCal2: A web-based calculator for calculating probability distribution functions as binomial, Poisson, exponential, gamma, beta, uniform, Weibull, lognormal, Cauchy, geometric, and negative binomial distributions. Selforganizology, 13(3-4): 26-65
Back to Top
Copyright © 2025-2026 - W. J. Zhang (E-mail: wjzhang@iaees.org)
International Academy of Ecology and Environmental Sciences. E-mail: office@iaees.org
Copyright © 2009-2024. International Academy of Ecology and Environmental Sciences. All rights reserved.
Web administrator: office@iaees.org, website@iaees.org;
Translate page to: