Home

probFunCal2

A Web-Based Calculator For Calculating Probability Distribution Functions As Binomial, Poisson, Exponential, Gamma, Beta, Uniform, Weibull, Lognormal, Cauchy, Geometric, And Negative Binomial Distributions

By W. J. Zhang



The user manual guide and suggested citation of this page:
Zhang W. J. 2026. probFunCal2: A web-based calculator for calculating probability distribution functions as binomial, Poisson, exponential, gamma, beta, uniform, Weibull, lognormal, Cauchy, geometric, and negative binomial distributions. Selforganizology, 13(3-4): 26-65
Also, click here to download the corresponding offline calculator.




Binomial Distribution

Number of trials (n):

Number of successes (k):

Probability of success (p):



Probability mass f(k):
Number of trials (n):

Number of successes (k):

Probability of success (p):



Cumulative probability F(k):
Probability (p):

Number of trials (n):

Probability of success (prob):



Quantile (k):


   Back to Top   



Poisson Distribution

Number of events (k):

Rate parameter (λ):



Probability mass f(k):
Number of events (k):

Rate parameter (λ):



Cumulative probability F(k):
Probability (p):

Rate parameter (λ):



Quantile (k):


   Back to Top   



Exponential Distribution

Random variable (x):

Rate parameter (λ):



Probability density f(x):
Random variable (x):

Rate parameter (λ):



Cumulative probability F(x):
Probability (p):

Rate parameter (λ):



Quantile (x):


   Back to Top   



Gamma Distribution

Random variable (x):

Shape parameter (α):

Scale parameter (β):



Probability density f(x):
Random variable (x):

Shape parameter (α):

Scale parameter (β):



Cumulative probability F(x):
Probability (p):

Shape parameter (α):

Scale parameter (β):



Quantile (x):


   Back to Top   



Beta Distribution

Random variable (x):

Shape parameter α:

Shape parameter β:



Probability density f(x):
Random variable (x):

Shape parameter α:

Shape parameter β:



Cumulative probability F(x):
Probability (p):

Shape parameter α:

Shape parameter β:



Quantile (x):


   Back to Top   



Uniform Distribution

Random variable (x):

Lower bound (a):

Upper bound (b):



Probability density f(x):
Random variable (x):

Lower bound (a):

Upper bound (b):



Cumulative probability F(x):
Probability (p):

Lower bound (a):

Upper bound (b):



Quantile (x):


   Back to Top   



Weibull Distribution

Random variable (x):

Shape parameter (k):

Scale parameter (λ):



Probability density f(x):
Random variable (x):

Shape parameter (k):

Scale parameter (λ):



Cumulative probability F(x):
Probability (p):

Shape parameter (k):

Scale parameter (λ):



Quantile (x):


   Back to Top   



Lognormal Distribution

Random variable (x):

Location parameter (μ):

Scale parameter (σ):



Probability density f(x):
Random variable (x):

Location parameter (μ):

Scale parameter (σ):



Cumulative probability F(x):
Probability (p):

Location parameter (μ):

Scale parameter (σ):



Quantile (x):


   Back to Top   



Cauchy Distribution

Random variable (x):

Location parameter (x₀):

Scale parameter (γ):



Probability density f(x):
Random variable (x):

Location parameter (x₀):

Scale parameter (γ):



Cumulative probability F(x):
Probability (p):

Location parameter (x₀):

Scale parameter (γ):



Quantile (x):


   Back to Top   



Geometric Distribution

Number of failures (k):

Probability of success (p):



Probability mass f(k):
Number of failures (k):

Probability of success (p):



Cumulative probability F(k):
Probability (p):

Probability of success (prob):



Quantile (k):


   Back to Top   



Negative Binomial Distribution

Number of failures (k):

Number of successes (r):

Probability of success (p):



Probability mass f(k):
Number of failures (k):

Number of successes (r):

Probability of success (p):



Cumulative probability F(k):
Probability (p):

Number of successes (r):

Probability of success (prob):



Quantile (k):


   Back to Top   



User manual guide:
Zhang W. J. 2026. probFunCal2: A web-based calculator for calculating probability distribution functions as binomial, Poisson, exponential, gamma, beta, uniform, Weibull, lognormal, Cauchy, geometric, and negative binomial distributions. Selforganizology, 13(3-4): 26-65


   Back to Top   



Copyright © 2025-2026 - W. J. Zhang (E-mail: wjzhang@iaees.org)
International Academy of Ecology and Environmental Sciences. E-mail: office@iaees.org
Copyright © 2009-2024. International Academy of Ecology and Environmental Sciences. All rights reserved.
Web administrator: office@iaees.org, website@iaees.org;


Translate page to: